Abstract

Digital speckle photography (DSP) is used for velocity field measurements inside a fiber network. The width of the channels in which the flow is measured is typically less than 1 mm. Therefore a microscope is used to image the fiber network. When we sample 30 images/s and separate the moving parts of the images from the stationary parts, the velocity field can be deduced with DSP.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Gutowski, ed., Advanced Composite Manufacturing (Wiley, Cambridge, Mass., 1997), p. 513.
  2. A. Andersson, P. Fernberg, M. Sjödahl, “Optical methods to study fracture of notched glass mat composites,” in International Conference on Trends in Optical Nondestructive Testing (École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2000), pp. 167–174.
  3. T. D. Papathanasiou, “A structure-orientated micromechanical model for viscous flow through square arrays of fibres,” Compos. Sci. Technol. 56, 1055–1069 (1996).
    [CrossRef]
  4. C. Binétruy, B. Hilaire, J. Pabiot, “The interactions between flows occurring inside and outside fabric tows during RTM,” Compos. Sci. Technol. 57, 587–596 (1997).
    [CrossRef]
  5. J. Bear, Dynamics of Fluids in Porous Media (Dover, New York, 1972).
  6. T. S. Lundström, “The permeability of non-crimp-stitched fabrics,” Composites A 31, 1345–1353 (2000).
    [CrossRef]
  7. J. Dahl, R. Hermansson, S.-E. Tiberg, P. Veber, “Use of video-based particle image velocimetry technique for studies of velocity fields in water heat storage vessel,” Exp. Fluids 18, 383–388 (1995).
    [CrossRef]
  8. M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36, 2875–2885 (1997).
    [CrossRef] [PubMed]
  9. H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
    [CrossRef]
  10. R. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
    [CrossRef]
  11. M. Sjödahl, L. R. Benckert, “Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32, 2278–2284 (1993).
    [CrossRef] [PubMed]

2000 (1)

T. S. Lundström, “The permeability of non-crimp-stitched fabrics,” Composites A 31, 1345–1353 (2000).
[CrossRef]

1997 (2)

C. Binétruy, B. Hilaire, J. Pabiot, “The interactions between flows occurring inside and outside fabric tows during RTM,” Compos. Sci. Technol. 57, 587–596 (1997).
[CrossRef]

M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36, 2875–2885 (1997).
[CrossRef] [PubMed]

1996 (1)

T. D. Papathanasiou, “A structure-orientated micromechanical model for viscous flow through square arrays of fibres,” Compos. Sci. Technol. 56, 1055–1069 (1996).
[CrossRef]

1995 (1)

J. Dahl, R. Hermansson, S.-E. Tiberg, P. Veber, “Use of video-based particle image velocimetry technique for studies of velocity fields in water heat storage vessel,” Exp. Fluids 18, 383–388 (1995).
[CrossRef]

1993 (1)

1991 (1)

R. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[CrossRef]

1989 (1)

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Adrian, R.

R. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[CrossRef]

Andersson, A.

A. Andersson, P. Fernberg, M. Sjödahl, “Optical methods to study fracture of notched glass mat composites,” in International Conference on Trends in Optical Nondestructive Testing (École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2000), pp. 167–174.

Bear, J.

J. Bear, Dynamics of Fluids in Porous Media (Dover, New York, 1972).

Benckert, L. R.

Binétruy, C.

C. Binétruy, B. Hilaire, J. Pabiot, “The interactions between flows occurring inside and outside fabric tows during RTM,” Compos. Sci. Technol. 57, 587–596 (1997).
[CrossRef]

Bruck, H. A.

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Dahl, J.

J. Dahl, R. Hermansson, S.-E. Tiberg, P. Veber, “Use of video-based particle image velocimetry technique for studies of velocity fields in water heat storage vessel,” Exp. Fluids 18, 383–388 (1995).
[CrossRef]

Fernberg, P.

A. Andersson, P. Fernberg, M. Sjödahl, “Optical methods to study fracture of notched glass mat composites,” in International Conference on Trends in Optical Nondestructive Testing (École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2000), pp. 167–174.

Hermansson, R.

J. Dahl, R. Hermansson, S.-E. Tiberg, P. Veber, “Use of video-based particle image velocimetry technique for studies of velocity fields in water heat storage vessel,” Exp. Fluids 18, 383–388 (1995).
[CrossRef]

Hilaire, B.

C. Binétruy, B. Hilaire, J. Pabiot, “The interactions between flows occurring inside and outside fabric tows during RTM,” Compos. Sci. Technol. 57, 587–596 (1997).
[CrossRef]

Lundström, T. S.

T. S. Lundström, “The permeability of non-crimp-stitched fabrics,” Composites A 31, 1345–1353 (2000).
[CrossRef]

McNeill, S. R.

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Pabiot, J.

C. Binétruy, B. Hilaire, J. Pabiot, “The interactions between flows occurring inside and outside fabric tows during RTM,” Compos. Sci. Technol. 57, 587–596 (1997).
[CrossRef]

Papathanasiou, T. D.

T. D. Papathanasiou, “A structure-orientated micromechanical model for viscous flow through square arrays of fibres,” Compos. Sci. Technol. 56, 1055–1069 (1996).
[CrossRef]

Peters, W. H.

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Sjödahl, M.

M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36, 2875–2885 (1997).
[CrossRef] [PubMed]

M. Sjödahl, L. R. Benckert, “Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32, 2278–2284 (1993).
[CrossRef] [PubMed]

A. Andersson, P. Fernberg, M. Sjödahl, “Optical methods to study fracture of notched glass mat composites,” in International Conference on Trends in Optical Nondestructive Testing (École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2000), pp. 167–174.

Sutton, M. A.

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Tiberg, S.-E.

J. Dahl, R. Hermansson, S.-E. Tiberg, P. Veber, “Use of video-based particle image velocimetry technique for studies of velocity fields in water heat storage vessel,” Exp. Fluids 18, 383–388 (1995).
[CrossRef]

Veber, P.

J. Dahl, R. Hermansson, S.-E. Tiberg, P. Veber, “Use of video-based particle image velocimetry technique for studies of velocity fields in water heat storage vessel,” Exp. Fluids 18, 383–388 (1995).
[CrossRef]

Annu. Rev. Fluid Mech. (1)

R. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[CrossRef]

Appl. Opt. (2)

Compos. Sci. Technol. (2)

T. D. Papathanasiou, “A structure-orientated micromechanical model for viscous flow through square arrays of fibres,” Compos. Sci. Technol. 56, 1055–1069 (1996).
[CrossRef]

C. Binétruy, B. Hilaire, J. Pabiot, “The interactions between flows occurring inside and outside fabric tows during RTM,” Compos. Sci. Technol. 57, 587–596 (1997).
[CrossRef]

Composites A (1)

T. S. Lundström, “The permeability of non-crimp-stitched fabrics,” Composites A 31, 1345–1353 (2000).
[CrossRef]

Exp. Fluids (1)

J. Dahl, R. Hermansson, S.-E. Tiberg, P. Veber, “Use of video-based particle image velocimetry technique for studies of velocity fields in water heat storage vessel,” Exp. Fluids 18, 383–388 (1995).
[CrossRef]

Exp. Mech. (1)

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Other (3)

J. Bear, Dynamics of Fluids in Porous Media (Dover, New York, 1972).

T. G. Gutowski, ed., Advanced Composite Manufacturing (Wiley, Cambridge, Mass., 1997), p. 513.

A. Andersson, P. Fernberg, M. Sjödahl, “Optical methods to study fracture of notched glass mat composites,” in International Conference on Trends in Optical Nondestructive Testing (École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2000), pp. 167–174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Top view of a dry ncf. The uppermost layer of fiber bundles is vertically positioned in the figure. The width of each set of fiber bundle and interbundle channel is ∼3 mm.

Fig. 2
Fig. 2

Cross section of an impregnated ncf sample. The white spots are glass fibers aligned normal to the cross section. The white areas on top and at the bottom of the figure are fibers nearly in parallel to the cross section. The width of the interbundle channel in focus is ∼0.5 mm.

Fig. 3
Fig. 3

Image of a fiber network with a vertical interbundle channel through which carbon powder seeded oil is flowing.

Fig. 4
Fig. 4

Experimental setup.

Fig. 5
Fig. 5

Particle trace. The background consisting of fiber network and nonmoving particles has been reduced from the image in Fig. 3.

Fig. 6
Fig. 6

Measured velocity field in the flow channel. The flow field is superimposed on the original to show in which regions the flow occurs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

cΔx, Δy; t=-1H*ξ, ν; 0Hξ, ν; t,
Ib=1Tt=0T It.
cΔx, Δy; t=-1H*ξ, ν; 0-1Ti=0T H*ξ, ν; iHξ, ν; t-1Ti=0T Hξ, ν; i.

Metrics