Abstract

Fabrication and applications are discussed for a visible-wavelength micropolarizer array consisting of a linear polarizer and a micropatterned liquid-crystal (LC) cell. LC alignment direction is controlled by means of depositing an optically transparent gold film at an oblique angle and coating the surface with an alkanethiol self-assembled monolayer. Microdomains of two perpendicular LC alignment directions are created by photolithography and etching of the gold layer, rotating the substrate 90 deg, and depositing a second oblique gold layer in the etched areas. The resulting array is used for polarization-difference imaging (PDI), a technique that enhances image contrast in the presence of scattering. Images obtained with the array require more processing than do conventional PDI images, but this method eliminates the need for an electronically activated LC filter and is especially suited to systems whose filters are closely integrated with optical sensor arrays.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Gillian, M. D. Tillin, “Patterned polarization-rotating optical element and method of making the same, and 3D display,” U.S. patent5,861,931 (19Jan.1999).
  2. M. Nishikawa, B. Taheri, J. L. West, Y. Rennikov, “New photo-aligned multi-domain liquid crystal display formed utilizing a liquid crystal polarizer,” Jpn. J. Appl. Phys. 37, L1393–L1395 (1998).
    [CrossRef]
  3. G. P. Können, Polarized Light in Nature (Cambridge University, Cambridge, UK, 1985), p. 145.
  4. M. P. Rowe, E. N. Pugh, J. S. Tyo, N. Engheta, “Polarization-difference imaging: a biologically-inspired technique for observation through scattering media,” Opt. Lett. 20, 608–610 (1995).
    [CrossRef] [PubMed]
  5. J. S. Tyo, E. N. Pugh, N. Engheta, “Colorimetric representations for use with polarization-difference imaging of objects in scattering media,” J. Opt. Soc. Am. A 15, 367–374 (1998).
    [CrossRef]
  6. J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
    [CrossRef]
  7. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [CrossRef]
  8. A. J. Pidduck, S. D. Haslam, G. P. Bryan-Brown, R. Bannister, I. D. Kitely, “Control of liquid crystal alignment by polyimide surface modification using atomic force microscopy,” Appl. Phys. Lett. 71, 2907–2909 (1997).
    [CrossRef]
  9. W. Bing, M. P. Mahajan, C. Rosenblatt, “Ultra high resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
    [CrossRef]
  10. S.-C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment,” IBM J. Res. Dev. 42, 537–542 (1998).
    [CrossRef]
  11. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
    [CrossRef] [PubMed]
  12. W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
    [CrossRef]
  13. K. Ichimura, Y. Hayashi, H. Akiyama, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9, 3298–3304 (1993).
    [CrossRef]
  14. Y. Tang, P. Xie, D. Liu, R. Zhang, “Performance-improved photo-driven liquid crystal cell using azobenzene-grafted ladderlike polysiloxane as command layer,” Macromol. Chem. Phys. 198, 1855–1863 (1997).
    [CrossRef]
  15. C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
    [CrossRef]
  16. V. K. Gupta, N. L. Abbott, “Design of surfaces for patterned alignment of liquid crystals on planar and curved substrates,” Science 276, 1533–1536 (1997).
    [CrossRef]
  17. J. J. Skaife, N. L. Abbott, “Quantitative characterization of obliquely deposited substrates of gold by atomic force microscopy: influence of substrate topography on anchoring of liquid crystals,” Chem. Mater. 11, 612–623 (1999).
    [CrossRef]
  18. V. K. Gupta, N. L. Abbott, “Azimuthal anchoring of nematic liquid crystals on self-assembled monolayers formed from odd and even alkanethiols,” Phys. Rev. E 54, R4540–R4543 (1996).
    [CrossRef]
  19. E. N. Pugh, D. A. Cameron, “Double cones as a basis for a new type of polarization vision in vertebrates,” Nature 353, 161–164 (1991).
    [CrossRef] [PubMed]
  20. J. S. Tyo, M. P. Rowe, E. N. Pugh, N. Engheta,‘ Target detection in optically scattering media by polarization-difference imaging,“ Appl. Opt. 35, 1855–1870 (1996).
    [CrossRef] [PubMed]
  21. R. R. Shah, N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293, 1296–1299 (2001).
    [CrossRef] [PubMed]
  22. J. J. Skaife, N. L. Abbott, “Quantitative interpretation of the optical textures of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir 16, 3529–3536 (2000).
    [CrossRef]
  23. V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279, 2077–2080 (1998).
    [CrossRef] [PubMed]

2001 (2)

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

R. R. Shah, N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293, 1296–1299 (2001).
[CrossRef] [PubMed]

2000 (2)

J. J. Skaife, N. L. Abbott, “Quantitative interpretation of the optical textures of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir 16, 3529–3536 (2000).
[CrossRef]

W. Bing, M. P. Mahajan, C. Rosenblatt, “Ultra high resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
[CrossRef]

1999 (3)

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
[CrossRef]

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
[CrossRef]

J. J. Skaife, N. L. Abbott, “Quantitative characterization of obliquely deposited substrates of gold by atomic force microscopy: influence of substrate topography on anchoring of liquid crystals,” Chem. Mater. 11, 612–623 (1999).
[CrossRef]

1998 (4)

S.-C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment,” IBM J. Res. Dev. 42, 537–542 (1998).
[CrossRef]

M. Nishikawa, B. Taheri, J. L. West, Y. Rennikov, “New photo-aligned multi-domain liquid crystal display formed utilizing a liquid crystal polarizer,” Jpn. J. Appl. Phys. 37, L1393–L1395 (1998).
[CrossRef]

J. S. Tyo, E. N. Pugh, N. Engheta, “Colorimetric representations for use with polarization-difference imaging of objects in scattering media,” J. Opt. Soc. Am. A 15, 367–374 (1998).
[CrossRef]

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279, 2077–2080 (1998).
[CrossRef] [PubMed]

1997 (4)

J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

A. J. Pidduck, S. D. Haslam, G. P. Bryan-Brown, R. Bannister, I. D. Kitely, “Control of liquid crystal alignment by polyimide surface modification using atomic force microscopy,” Appl. Phys. Lett. 71, 2907–2909 (1997).
[CrossRef]

V. K. Gupta, N. L. Abbott, “Design of surfaces for patterned alignment of liquid crystals on planar and curved substrates,” Science 276, 1533–1536 (1997).
[CrossRef]

Y. Tang, P. Xie, D. Liu, R. Zhang, “Performance-improved photo-driven liquid crystal cell using azobenzene-grafted ladderlike polysiloxane as command layer,” Macromol. Chem. Phys. 198, 1855–1863 (1997).
[CrossRef]

1996 (2)

V. K. Gupta, N. L. Abbott, “Azimuthal anchoring of nematic liquid crystals on self-assembled monolayers formed from odd and even alkanethiols,” Phys. Rev. E 54, R4540–R4543 (1996).
[CrossRef]

J. S. Tyo, M. P. Rowe, E. N. Pugh, N. Engheta,‘ Target detection in optically scattering media by polarization-difference imaging,“ Appl. Opt. 35, 1855–1870 (1996).
[CrossRef] [PubMed]

1995 (1)

1993 (1)

K. Ichimura, Y. Hayashi, H. Akiyama, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9, 3298–3304 (1993).
[CrossRef]

1991 (2)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

E. N. Pugh, D. A. Cameron, “Double cones as a basis for a new type of polarization vision in vertebrates,” Nature 353, 161–164 (1991).
[CrossRef] [PubMed]

Abbott, N. L.

R. R. Shah, N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293, 1296–1299 (2001).
[CrossRef] [PubMed]

J. J. Skaife, N. L. Abbott, “Quantitative interpretation of the optical textures of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir 16, 3529–3536 (2000).
[CrossRef]

J. J. Skaife, N. L. Abbott, “Quantitative characterization of obliquely deposited substrates of gold by atomic force microscopy: influence of substrate topography on anchoring of liquid crystals,” Chem. Mater. 11, 612–623 (1999).
[CrossRef]

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279, 2077–2080 (1998).
[CrossRef] [PubMed]

V. K. Gupta, N. L. Abbott, “Design of surfaces for patterned alignment of liquid crystals on planar and curved substrates,” Science 276, 1533–1536 (1997).
[CrossRef]

V. K. Gupta, N. L. Abbott, “Azimuthal anchoring of nematic liquid crystals on self-assembled monolayers formed from odd and even alkanethiols,” Phys. Rev. E 54, R4540–R4543 (1996).
[CrossRef]

Akiyama, H.

K. Ichimura, Y. Hayashi, H. Akiyama, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9, 3298–3304 (1993).
[CrossRef]

Andry, P. S.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Bannister, R.

A. J. Pidduck, S. D. Haslam, G. P. Bryan-Brown, R. Bannister, I. D. Kitely, “Control of liquid crystal alignment by polyimide surface modification using atomic force microscopy,” Appl. Phys. Lett. 71, 2907–2909 (1997).
[CrossRef]

Bing, W.

W. Bing, M. P. Mahajan, C. Rosenblatt, “Ultra high resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
[CrossRef]

Brady, D. J.

J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Bryan-Brown, G. P.

A. J. Pidduck, S. D. Haslam, G. P. Bryan-Brown, R. Bannister, I. D. Kitely, “Control of liquid crystal alignment by polyimide surface modification using atomic force microscopy,” Appl. Phys. Lett. 71, 2907–2909 (1997).
[CrossRef]

Cai, C.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Callegari, A.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Cameron, D. A.

E. N. Pugh, D. A. Cameron, “Double cones as a basis for a new type of polarization vision in vertebrates,” Nature 353, 161–164 (1991).
[CrossRef] [PubMed]

Chaudhari, P.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

S.-C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment,” IBM J. Res. Dev. 42, 537–542 (1998).
[CrossRef]

Deguzman, P. C.

Doyle, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Dubrovsky, T. B.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279, 2077–2080 (1998).
[CrossRef] [PubMed]

Engheta, N.

Fei, H.

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
[CrossRef]

Galligan, E.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Gillian, M. D.

M. D. Gillian, M. D. Tillin, “Patterned polarization-rotating optical element and method of making the same, and 3D display,” U.S. patent5,861,931 (19Jan.1999).

Guo, J.

J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Gupta, V. K.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279, 2077–2080 (1998).
[CrossRef] [PubMed]

V. K. Gupta, N. L. Abbott, “Design of surfaces for patterned alignment of liquid crystals on planar and curved substrates,” Science 276, 1533–1536 (1997).
[CrossRef]

V. K. Gupta, N. L. Abbott, “Azimuthal anchoring of nematic liquid crystals on self-assembled monolayers formed from odd and even alkanethiols,” Phys. Rev. E 54, R4540–R4543 (1996).
[CrossRef]

Haslam, S. D.

A. J. Pidduck, S. D. Haslam, G. P. Bryan-Brown, R. Bannister, I. D. Kitely, “Control of liquid crystal alignment by polyimide surface modification using atomic force microscopy,” Appl. Phys. Lett. 71, 2907–2909 (1997).
[CrossRef]

Hayashi, Y.

K. Ichimura, Y. Hayashi, H. Akiyama, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9, 3298–3304 (1993).
[CrossRef]

Hougham, G.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Ichimura, K.

K. Ichimura, Y. Hayashi, H. Akiyama, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9, 3298–3304 (1993).
[CrossRef]

John, R.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

John, R. A.

S.-C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment,” IBM J. Res. Dev. 42, 537–542 (1998).
[CrossRef]

Jones, M. W.

Katoh, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Kitely, I. D.

A. J. Pidduck, S. D. Haslam, G. P. Bryan-Brown, R. Bannister, I. D. Kitely, “Control of liquid crystal alignment by polyimide surface modification using atomic force microscopy,” Appl. Phys. Lett. 71, 2907–2909 (1997).
[CrossRef]

Können, G. P.

G. P. Können, Polarized Light in Nature (Cambridge University, Cambridge, UK, 1985), p. 145.

Lacey, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Lacey, J. A.

S.-C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment,” IBM J. Res. Dev. 42, 537–542 (1998).
[CrossRef]

Lang, N. D.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Lien, S.-C. A.

S.-C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment,” IBM J. Res. Dev. 42, 537–542 (1998).
[CrossRef]

Lien, S.-C.A.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Liu, D.

Y. Tang, P. Xie, D. Liu, R. Zhang, “Performance-improved photo-driven liquid crystal cell using azobenzene-grafted ladderlike polysiloxane as command layer,” Macromol. Chem. Phys. 198, 1855–1863 (1997).
[CrossRef]

Lu, M.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Mahajan, M. P.

W. Bing, M. P. Mahajan, C. Rosenblatt, “Ultra high resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
[CrossRef]

Meier, J. T.

N. Pugh, E.

Nakagaki, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Nakagawa, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Nakano, H.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Nishikawa, M.

M. Nishikawa, B. Taheri, J. L. West, Y. Rennikov, “New photo-aligned multi-domain liquid crystal display formed utilizing a liquid crystal polarizer,” Jpn. J. Appl. Phys. 37, L1393–L1395 (1998).
[CrossRef]

Nordin, G. P.

Odahara, S.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Pidduck, A. J.

A. J. Pidduck, S. D. Haslam, G. P. Bryan-Brown, R. Bannister, I. D. Kitely, “Control of liquid crystal alignment by polyimide surface modification using atomic force microscopy,” Appl. Phys. Lett. 71, 2907–2909 (1997).
[CrossRef]

Pugh, E. N.

Purushothaman, S.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Rennikov, Y.

M. Nishikawa, B. Taheri, J. L. West, Y. Rennikov, “New photo-aligned multi-domain liquid crystal display formed utilizing a liquid crystal polarizer,” Jpn. J. Appl. Phys. 37, L1393–L1395 (1998).
[CrossRef]

Ritsko, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Rosenblatt, C.

W. Bing, M. P. Mahajan, C. Rosenblatt, “Ultra high resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
[CrossRef]

Rowe, M. P.

Saitoh, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Sakai, K.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Samant, M.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Satoh, H.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Shah, R. R.

R. R. Shah, N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293, 1296–1299 (2001).
[CrossRef] [PubMed]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Shiota, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Skaife, J. J.

J. J. Skaife, N. L. Abbott, “Quantitative interpretation of the optical textures of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir 16, 3529–3536 (2000).
[CrossRef]

J. J. Skaife, N. L. Abbott, “Quantitative characterization of obliquely deposited substrates of gold by atomic force microscopy: influence of substrate topography on anchoring of liquid crystals,” Chem. Mater. 11, 612–623 (1999).
[CrossRef]

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279, 2077–2080 (1998).
[CrossRef] [PubMed]

Speidell, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Speidell, J. L.

S.-C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment,” IBM J. Res. Dev. 42, 537–542 (1998).
[CrossRef]

Stöhr, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Sun, G.

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
[CrossRef]

Sun, S.-T.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Taheri, B.

M. Nishikawa, B. Taheri, J. L. West, Y. Rennikov, “New photo-aligned multi-domain liquid crystal display formed utilizing a liquid crystal polarizer,” Jpn. J. Appl. Phys. 37, L1393–L1395 (1998).
[CrossRef]

Tang, Y.

Y. Tang, P. Xie, D. Liu, R. Zhang, “Performance-improved photo-driven liquid crystal cell using azobenzene-grafted ladderlike polysiloxane as command layer,” Macromol. Chem. Phys. 198, 1855–1863 (1997).
[CrossRef]

Tillin, M. D.

M. D. Gillian, M. D. Tillin, “Patterned polarization-rotating optical element and method of making the same, and 3D display,” U.S. patent5,861,931 (19Jan.1999).

Tyo, J. S.

Wang, C.

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
[CrossRef]

Wei, Z.

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
[CrossRef]

West, J. L.

M. Nishikawa, B. Taheri, J. L. West, Y. Rennikov, “New photo-aligned multi-domain liquid crystal display formed utilizing a liquid crystal polarizer,” Jpn. J. Appl. Phys. 37, L1393–L1395 (1998).
[CrossRef]

Xia, J.

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
[CrossRef]

Xie, P.

Y. Tang, P. Xie, D. Liu, R. Zhang, “Performance-improved photo-driven liquid crystal cell using azobenzene-grafted ladderlike polysiloxane as command layer,” Macromol. Chem. Phys. 198, 1855–1863 (1997).
[CrossRef]

Yang, K.-H.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

Yang, Q.

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
[CrossRef]

Yang, Y.

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
[CrossRef]

Zhang, R.

Y. Tang, P. Xie, D. Liu, R. Zhang, “Performance-improved photo-driven liquid crystal cell using azobenzene-grafted ladderlike polysiloxane as command layer,” Macromol. Chem. Phys. 198, 1855–1863 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, G. Sun, “Optically controlled image storage in azobenzene liquid-crystalline polymer films,” Appl. Phys. B 68, 1117–1120 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

A. J. Pidduck, S. D. Haslam, G. P. Bryan-Brown, R. Bannister, I. D. Kitely, “Control of liquid crystal alignment by polyimide surface modification using atomic force microscopy,” Appl. Phys. Lett. 71, 2907–2909 (1997).
[CrossRef]

W. Bing, M. P. Mahajan, C. Rosenblatt, “Ultra high resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
[CrossRef]

Chem. Mater. (1)

J. J. Skaife, N. L. Abbott, “Quantitative characterization of obliquely deposited substrates of gold by atomic force microscopy: influence of substrate topography on anchoring of liquid crystals,” Chem. Mater. 11, 612–623 (1999).
[CrossRef]

IBM J. Res. Dev. (1)

S.-C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment,” IBM J. Res. Dev. 42, 537–542 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (1)

M. Nishikawa, B. Taheri, J. L. West, Y. Rennikov, “New photo-aligned multi-domain liquid crystal display formed utilizing a liquid crystal polarizer,” Jpn. J. Appl. Phys. 37, L1393–L1395 (1998).
[CrossRef]

Langmuir (2)

K. Ichimura, Y. Hayashi, H. Akiyama, “Photoregulation of in-plane reorientation of liquid crystals by azobenzenes laterally attached to substrate surfaces,” Langmuir 9, 3298–3304 (1993).
[CrossRef]

J. J. Skaife, N. L. Abbott, “Quantitative interpretation of the optical textures of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir 16, 3529–3536 (2000).
[CrossRef]

Macromol. Chem. Phys. (1)

Y. Tang, P. Xie, D. Liu, R. Zhang, “Performance-improved photo-driven liquid crystal cell using azobenzene-grafted ladderlike polysiloxane as command layer,” Macromol. Chem. Phys. 198, 1855–1863 (1997).
[CrossRef]

Nature (3)

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56–59 (2001).
[CrossRef] [PubMed]

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

E. N. Pugh, D. A. Cameron, “Double cones as a basis for a new type of polarization vision in vertebrates,” Nature 353, 161–164 (1991).
[CrossRef] [PubMed]

Opt. Eng. (1)

J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

V. K. Gupta, N. L. Abbott, “Azimuthal anchoring of nematic liquid crystals on self-assembled monolayers formed from odd and even alkanethiols,” Phys. Rev. E 54, R4540–R4543 (1996).
[CrossRef]

Science (3)

V. K. Gupta, N. L. Abbott, “Design of surfaces for patterned alignment of liquid crystals on planar and curved substrates,” Science 276, 1533–1536 (1997).
[CrossRef]

R. R. Shah, N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293, 1296–1299 (2001).
[CrossRef] [PubMed]

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279, 2077–2080 (1998).
[CrossRef] [PubMed]

Other (2)

M. D. Gillian, M. D. Tillin, “Patterned polarization-rotating optical element and method of making the same, and 3D display,” U.S. patent5,861,931 (19Jan.1999).

G. P. Können, Polarized Light in Nature (Cambridge University, Cambridge, UK, 1985), p. 145.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of oblique metal deposition. (b) Schematic of patterned sample immediately after second metal deposition step, showing two metal deposition directions on the surface.

Fig. 2
Fig. 2

(a) Optical transmission micrograph of LC cell between crossed polarizers. (b) Between parallel polarizers.

Fig. 3
Fig. 3

(a) Polarization difference imaging setup with electronically controlled LC shutter.4 (b) Polarization difference imaging setup modified to include micropolarizer array instead of LC shutter.

Fig. 4
Fig. 4

(a) Schematic of aluminum target with four sanded patches. Lines indicate sanding direction. (b) Black-and-white image of LC micropolarizer array. This template image is used to divide camera images into two subimages of perpendicular polarization. (c) Conventional PDI picture of aluminum target in scattering solution. (d) Profiles of gray-scale values across top and bottom of conventional PDI image. Profiles are averages taken from horizontal bands across the image indicated by parentheses. Upper profile has been shifted upward by 100 units for clarity. (e) Polarization difference image calculated from target image projected onto micropolarizer array. (f) Profiles of gray-scale values across top and bottom of array PDI image. Upper profile has been shifted upward by 100 units.

Metrics