Abstract

Ideal concentrators with large gaps are presented. These new devices use optical elements surrounding the receiver. When their number is large, they (may) constitute a microstructure (many components with small sizes). Smaller gaps can also be achieved by use of a fewer number of optics. Different ways to combine these optical elements are presented for the case of larger and smaller gaps. Designs that use mirrors and total internal reflection are also presented for the case of larger gaps. The mathematical methods used to calculate the shape of the optics are outlined. In spite of the fact that the number of optics may be large, given the symmetries inherent to these designs, the elements in these microstructures are all equal. This is a simplifying feature that is important for their design and eventual production in the future.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Welford, R. Winston, The Optics of Nonimaging Concentrators, Light and Solar Energy (Academic, New York, 1978).
  2. P. T. Ong, J. M. Gordon, A. Rabl, W. Cai, “Tailored edge-ray designs for uniform illumination of distant targets,” Opt. Eng. 34, 1726–1737 (1995).
    [CrossRef]
  3. P. T. Ong, J. M. Gordon, A. Rabl, “Tailored edge-ray designs for tubular sources,” Appl. Opt. 35, 4361–4371 (1996).
    [CrossRef] [PubMed]
  4. R. Winston, H. Hinterberger, “Principles of cylindrical concentrators for solar energy,” Sol. Energy 17, 255–258 (1975).
    [CrossRef]
  5. A. Rabl, N. B. Goodman, R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22, 373–381 (1979).
    [CrossRef]
  6. W. R. McIntire, “New reflector design which avoids losses through gaps between tubular absorber and reflector,” Sol. Energy 25, 215–220 (1980).
    [CrossRef]
  7. R. Winston, “Cavity enhancement by controlled directional scattering,” Appl. Opt. 19, 195–197 (1980).
    [CrossRef] [PubMed]
  8. M. Collares-Pereira, “A novel bifacial fin CPC concentrator for thermal application up to 100 °C,” Sun at Work in Europe (1992).
  9. M. Collares-Pereira, M. J. Carvalho, J. Farinha Mendes, J. Oliveira, A. Harberle, V. Wittier, “Optical and thermal testing of a new 1.12X CPC solar collector,” Sol. Energy Mater. Sol. Cells 37, 175–190 (1995).
    [CrossRef]
  10. Ao Sol, Energias Renováaveis, Lda Edificio Petrogal, Parque Industrial do Porto Alto Porto Alto—Lugar de Sesmaria Limpa, Apartado 173, 2135-402 Samora Correia, Portugal, http://www.aosol.pt .
  11. P. Benı́tez, R. Garcı́a, J. C. Miñano, “Contactless efficient two-stage solar concentrator for tubular absorber,” Appl. Opt. 36, 7119–7128 (1997).
    [CrossRef]
  12. H. Ries, J. Mushaweck, “Maximum gap of ideal concentrators for cylindrical absorbers,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 120–123 (1999).
    [CrossRef]
  13. H. Ries, J. Mushaweck, “Double-tailored microstructures,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 124–128 (1999).
    [CrossRef]
  14. D. Feuermann, J. M. Gordon, H. Ries, “Nonimaging optical designs for maximum-power-density remote irradiation,” Appl. Opt. 37, 1835–1844 (1998).
    [CrossRef]
  15. R. Winston, Harald Ries, “Nonimaging reflectors as functionals of the desired irradiance,” J. Opt. Soc. Am. A 10, 1902–1908 (1993).
    [CrossRef]
  16. H. Ries, R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11, 1260–1264 (1994).
    [CrossRef]
  17. J. Chaves, M. Collares-Pereira, “Ultra flat ideal concentrators of high concentration,” Sol. Energy 69, 269–281 (2000).
    [CrossRef]
  18. 3M has a mirror called an enhanced specular reflector with a reflectivity of ∼98%. It has not been commercialized yet.
  19. W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).
  20. J. M. Gordon, “Simple string construction method for tailored edge-ray concentrators in maximum-flux solar energy collectors,” Sol. Energy 56, 279–284 (1996).
    [CrossRef]
  21. M. Collares-Pereira, J. F. Mendes, A. Rabl, H. Ries, “Redirecting concentrated radiation,” in Nonimaging Optics: Maximum Efficiency Light Transfer III, R. Winston, ed., Proc. SPIE2538, 131–135 (1995).
    [CrossRef]
  22. X. Ning, R. Winston, J. O’Gallagher, “Dielectric totally internally reflecting concentrators,” Appl. Opt. 26, 300–305 (1987).
    [CrossRef] [PubMed]
  23. R. P. Friedman, J. M. Gordon, “Optical designs for ultrahigh-flux infrared and solar energy collection: Monolithic dielectric tailored edge-ray concentrators,” Appl. Opt. 35, 6684–6691 (1996).
    [CrossRef] [PubMed]
  24. A. Rabl, J. M. Gordon, “Reflector design for illumination with extended sources: The basic solutions,” Appl. Opt. 33, 6012–6021 (1994).
    [CrossRef] [PubMed]

2000 (1)

J. Chaves, M. Collares-Pereira, “Ultra flat ideal concentrators of high concentration,” Sol. Energy 69, 269–281 (2000).
[CrossRef]

1998 (1)

1997 (1)

1996 (3)

1995 (2)

P. T. Ong, J. M. Gordon, A. Rabl, W. Cai, “Tailored edge-ray designs for uniform illumination of distant targets,” Opt. Eng. 34, 1726–1737 (1995).
[CrossRef]

M. Collares-Pereira, M. J. Carvalho, J. Farinha Mendes, J. Oliveira, A. Harberle, V. Wittier, “Optical and thermal testing of a new 1.12X CPC solar collector,” Sol. Energy Mater. Sol. Cells 37, 175–190 (1995).
[CrossRef]

1994 (2)

1993 (1)

1987 (1)

1980 (2)

W. R. McIntire, “New reflector design which avoids losses through gaps between tubular absorber and reflector,” Sol. Energy 25, 215–220 (1980).
[CrossRef]

R. Winston, “Cavity enhancement by controlled directional scattering,” Appl. Opt. 19, 195–197 (1980).
[CrossRef] [PubMed]

1979 (1)

A. Rabl, N. B. Goodman, R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22, 373–381 (1979).
[CrossRef]

1975 (1)

R. Winston, H. Hinterberger, “Principles of cylindrical concentrators for solar energy,” Sol. Energy 17, 255–258 (1975).
[CrossRef]

Beni´tez, P.

Cai, W.

P. T. Ong, J. M. Gordon, A. Rabl, W. Cai, “Tailored edge-ray designs for uniform illumination of distant targets,” Opt. Eng. 34, 1726–1737 (1995).
[CrossRef]

Carvalho, M. J.

M. Collares-Pereira, M. J. Carvalho, J. Farinha Mendes, J. Oliveira, A. Harberle, V. Wittier, “Optical and thermal testing of a new 1.12X CPC solar collector,” Sol. Energy Mater. Sol. Cells 37, 175–190 (1995).
[CrossRef]

Chaves, J.

J. Chaves, M. Collares-Pereira, “Ultra flat ideal concentrators of high concentration,” Sol. Energy 69, 269–281 (2000).
[CrossRef]

Collares-Pereira, M.

J. Chaves, M. Collares-Pereira, “Ultra flat ideal concentrators of high concentration,” Sol. Energy 69, 269–281 (2000).
[CrossRef]

M. Collares-Pereira, M. J. Carvalho, J. Farinha Mendes, J. Oliveira, A. Harberle, V. Wittier, “Optical and thermal testing of a new 1.12X CPC solar collector,” Sol. Energy Mater. Sol. Cells 37, 175–190 (1995).
[CrossRef]

M. Collares-Pereira, “A novel bifacial fin CPC concentrator for thermal application up to 100 °C,” Sun at Work in Europe (1992).

M. Collares-Pereira, J. F. Mendes, A. Rabl, H. Ries, “Redirecting concentrated radiation,” in Nonimaging Optics: Maximum Efficiency Light Transfer III, R. Winston, ed., Proc. SPIE2538, 131–135 (1995).
[CrossRef]

Farinha Mendes, J.

M. Collares-Pereira, M. J. Carvalho, J. Farinha Mendes, J. Oliveira, A. Harberle, V. Wittier, “Optical and thermal testing of a new 1.12X CPC solar collector,” Sol. Energy Mater. Sol. Cells 37, 175–190 (1995).
[CrossRef]

Feuermann, D.

Friedman, R. P.

Garci´a, R.

Goodman, N. B.

A. Rabl, N. B. Goodman, R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22, 373–381 (1979).
[CrossRef]

Gordon, J. M.

Harberle, A.

M. Collares-Pereira, M. J. Carvalho, J. Farinha Mendes, J. Oliveira, A. Harberle, V. Wittier, “Optical and thermal testing of a new 1.12X CPC solar collector,” Sol. Energy Mater. Sol. Cells 37, 175–190 (1995).
[CrossRef]

Hinterberger, H.

R. Winston, H. Hinterberger, “Principles of cylindrical concentrators for solar energy,” Sol. Energy 17, 255–258 (1975).
[CrossRef]

McIntire, W. R.

W. R. McIntire, “New reflector design which avoids losses through gaps between tubular absorber and reflector,” Sol. Energy 25, 215–220 (1980).
[CrossRef]

Mendes, J. F.

M. Collares-Pereira, J. F. Mendes, A. Rabl, H. Ries, “Redirecting concentrated radiation,” in Nonimaging Optics: Maximum Efficiency Light Transfer III, R. Winston, ed., Proc. SPIE2538, 131–135 (1995).
[CrossRef]

Miñano, J. C.

Mushaweck, J.

H. Ries, J. Mushaweck, “Double-tailored microstructures,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 124–128 (1999).
[CrossRef]

H. Ries, J. Mushaweck, “Maximum gap of ideal concentrators for cylindrical absorbers,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 120–123 (1999).
[CrossRef]

Ning, X.

O’Gallagher, J.

Oliveira, J.

M. Collares-Pereira, M. J. Carvalho, J. Farinha Mendes, J. Oliveira, A. Harberle, V. Wittier, “Optical and thermal testing of a new 1.12X CPC solar collector,” Sol. Energy Mater. Sol. Cells 37, 175–190 (1995).
[CrossRef]

Ong, P. T.

P. T. Ong, J. M. Gordon, A. Rabl, “Tailored edge-ray designs for tubular sources,” Appl. Opt. 35, 4361–4371 (1996).
[CrossRef] [PubMed]

P. T. Ong, J. M. Gordon, A. Rabl, W. Cai, “Tailored edge-ray designs for uniform illumination of distant targets,” Opt. Eng. 34, 1726–1737 (1995).
[CrossRef]

Rabl, A.

P. T. Ong, J. M. Gordon, A. Rabl, “Tailored edge-ray designs for tubular sources,” Appl. Opt. 35, 4361–4371 (1996).
[CrossRef] [PubMed]

P. T. Ong, J. M. Gordon, A. Rabl, W. Cai, “Tailored edge-ray designs for uniform illumination of distant targets,” Opt. Eng. 34, 1726–1737 (1995).
[CrossRef]

A. Rabl, J. M. Gordon, “Reflector design for illumination with extended sources: The basic solutions,” Appl. Opt. 33, 6012–6021 (1994).
[CrossRef] [PubMed]

A. Rabl, N. B. Goodman, R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22, 373–381 (1979).
[CrossRef]

M. Collares-Pereira, J. F. Mendes, A. Rabl, H. Ries, “Redirecting concentrated radiation,” in Nonimaging Optics: Maximum Efficiency Light Transfer III, R. Winston, ed., Proc. SPIE2538, 131–135 (1995).
[CrossRef]

Ries, H.

D. Feuermann, J. M. Gordon, H. Ries, “Nonimaging optical designs for maximum-power-density remote irradiation,” Appl. Opt. 37, 1835–1844 (1998).
[CrossRef]

H. Ries, R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11, 1260–1264 (1994).
[CrossRef]

M. Collares-Pereira, J. F. Mendes, A. Rabl, H. Ries, “Redirecting concentrated radiation,” in Nonimaging Optics: Maximum Efficiency Light Transfer III, R. Winston, ed., Proc. SPIE2538, 131–135 (1995).
[CrossRef]

H. Ries, J. Mushaweck, “Double-tailored microstructures,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 124–128 (1999).
[CrossRef]

H. Ries, J. Mushaweck, “Maximum gap of ideal concentrators for cylindrical absorbers,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 120–123 (1999).
[CrossRef]

Ries, Harald

Welford, W. T.

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).

W. T. Welford, R. Winston, The Optics of Nonimaging Concentrators, Light and Solar Energy (Academic, New York, 1978).

Winston, R.

H. Ries, R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11, 1260–1264 (1994).
[CrossRef]

R. Winston, Harald Ries, “Nonimaging reflectors as functionals of the desired irradiance,” J. Opt. Soc. Am. A 10, 1902–1908 (1993).
[CrossRef]

X. Ning, R. Winston, J. O’Gallagher, “Dielectric totally internally reflecting concentrators,” Appl. Opt. 26, 300–305 (1987).
[CrossRef] [PubMed]

R. Winston, “Cavity enhancement by controlled directional scattering,” Appl. Opt. 19, 195–197 (1980).
[CrossRef] [PubMed]

A. Rabl, N. B. Goodman, R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22, 373–381 (1979).
[CrossRef]

R. Winston, H. Hinterberger, “Principles of cylindrical concentrators for solar energy,” Sol. Energy 17, 255–258 (1975).
[CrossRef]

W. T. Welford, R. Winston, The Optics of Nonimaging Concentrators, Light and Solar Energy (Academic, New York, 1978).

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).

Wittier, V.

M. Collares-Pereira, M. J. Carvalho, J. Farinha Mendes, J. Oliveira, A. Harberle, V. Wittier, “Optical and thermal testing of a new 1.12X CPC solar collector,” Sol. Energy Mater. Sol. Cells 37, 175–190 (1995).
[CrossRef]

Appl. Opt. (7)

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

P. T. Ong, J. M. Gordon, A. Rabl, W. Cai, “Tailored edge-ray designs for uniform illumination of distant targets,” Opt. Eng. 34, 1726–1737 (1995).
[CrossRef]

Sol. Energy (5)

R. Winston, H. Hinterberger, “Principles of cylindrical concentrators for solar energy,” Sol. Energy 17, 255–258 (1975).
[CrossRef]

A. Rabl, N. B. Goodman, R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22, 373–381 (1979).
[CrossRef]

W. R. McIntire, “New reflector design which avoids losses through gaps between tubular absorber and reflector,” Sol. Energy 25, 215–220 (1980).
[CrossRef]

J. Chaves, M. Collares-Pereira, “Ultra flat ideal concentrators of high concentration,” Sol. Energy 69, 269–281 (2000).
[CrossRef]

J. M. Gordon, “Simple string construction method for tailored edge-ray concentrators in maximum-flux solar energy collectors,” Sol. Energy 56, 279–284 (1996).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

M. Collares-Pereira, M. J. Carvalho, J. Farinha Mendes, J. Oliveira, A. Harberle, V. Wittier, “Optical and thermal testing of a new 1.12X CPC solar collector,” Sol. Energy Mater. Sol. Cells 37, 175–190 (1995).
[CrossRef]

Other (8)

Ao Sol, Energias Renováaveis, Lda Edificio Petrogal, Parque Industrial do Porto Alto Porto Alto—Lugar de Sesmaria Limpa, Apartado 173, 2135-402 Samora Correia, Portugal, http://www.aosol.pt .

W. T. Welford, R. Winston, The Optics of Nonimaging Concentrators, Light and Solar Energy (Academic, New York, 1978).

H. Ries, J. Mushaweck, “Maximum gap of ideal concentrators for cylindrical absorbers,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 120–123 (1999).
[CrossRef]

H. Ries, J. Mushaweck, “Double-tailored microstructures,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 124–128 (1999).
[CrossRef]

M. Collares-Pereira, “A novel bifacial fin CPC concentrator for thermal application up to 100 °C,” Sun at Work in Europe (1992).

M. Collares-Pereira, J. F. Mendes, A. Rabl, H. Ries, “Redirecting concentrated radiation,” in Nonimaging Optics: Maximum Efficiency Light Transfer III, R. Winston, ed., Proc. SPIE2538, 131–135 (1995).
[CrossRef]

3M has a mirror called an enhanced specular reflector with a reflectivity of ∼98%. It has not been commercialized yet.

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Main building blocks used for the construction of the devices presented in this paper: (a) a CPC, (b) a concentrator designed for a circular light source placed at a finite distance, (c) a device similar to the one presented in (b) but designed for an exit angle θ* smaller than π/2, (d) a circular arc.

Fig. 2
Fig. 2

(a) Ideal concentrator that has a small gap and results from the combination of a small number of optics, (b) a zoom over the receiver area so that the gap can be clearly seen.

Fig. 3
Fig. 3

(a) Combination of two upper optics redirecting light onto the same exit aperture DE. The dashed line AC divides the upper optics from the lower optics. The upper optics is shown in greater detail in (b).

Fig. 4
Fig. 4

(a) Combination of two upper optics onto the same exit aperture DE. The upper optics is shown in greater detail in (b).

Fig. 5
Fig. 5

When a sufficient number of upper optics are combined, the source of radiation can be completely surrounded. The lower optics is designed in a similar manner to the one in Fig. 4(a). A tailored device is added so that the exit angle is θ c .

Fig. 6
Fig. 6

Upper optics for total internal reflection.

Fig. 7
Fig. 7

Set of upper optics similar to the one presented in Fig. 6 can be placed around a circular receiver. The lower optics can then be defined and is shown.

Fig. 8
Fig. 8

A tailored concentrator must be added to the device presented in Fig. 7 to complement it: (a) and (b) show two possibilities for its design.

Fig. 9
Fig. 9

Construction of the tailored concentrator comprising the upper optics of Fig. 4. The points of the mirrors P 1 Q 1 and P 2 Q 2 can be determined, making r i δ + L 1 + L 2 = constant.

Fig. 10
Fig. 10

Definition of the relevant quantities for the derivation of the equations defining the points through which the mirrors must pass.

Fig. 11
Fig. 11

Angle rotator rotates the radiation by an amount β without changing its angular aperture θ. The angle rotator used here is composed of three flat mirrors and an elliptical arc.

Fig. 12
Fig. 12

(a) Ideal concentrator designed with angle rotators, (b) the upper angle transformers can be replaced with other devices as long as they have the same entrance and exit apertures and exchange the same light distribution with the angle rotators.

Fig. 13
Fig. 13

Ideal concentrator for a convex entrance aperture: (a) combination of two upper optics onto the same exit aperture DE, (b) the upper optics, shown in greater detail.

Fig. 14
Fig. 14

Ideal concentrator for a convex entrance aperture that has a different design from the one shown in Fig. 13.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ν1=cos-π/2+θ+β, sin-π/2+θ+β,ν2=-cos-π/2-θ+β, sin-π/2-θ+β.
ν3=cos-π/2-θ+β+2π/N, sin-π/2-θ+β+2π/N, ν4=cosβ, sinβ.
ν5=cos-π/2+θ+β+2π/N, sin-π/2+θ+β+2π/N.
ν8=cos-θ+β+2π/N, sin-θ+β+2π/N.
Q4Q5¯=Q1Q2¯sinθ=2πri/N sinθ.
Q2Q4¯=Q4Q5¯1+1/sinθ=2πri/Nsinθ+1.
Q4=Q2-Q2Q4¯ν2=Q2-2πri/Nsinθ+1ν2.
Q8=RαQ4,
F1a=Q8+Q8F1¯ν5,
F1b=Q4+Q4F1¯ν1.
Q7a=F1a-Q7F1¯ν1
Q7b=Q8-Q8W1¯ν3-W1Q7¯ν6.
Q7F1¯=Q8W1¯+Q8F1¯.
F1a=F1btwo equations;Q7a=Q7btwo equations;Q7F1¯=Q8W1¯+Q8F1¯ one equation.
Q5=Q4+Q4Q5¯ν4=Q2-2πri/Nsinθ+1ν2+2πri/N sinθν4.
Fa=Q5+Q5F¯ν2
Fb=Q7-Q7F¯ν3.
Fa=Fb two equations.
Q7Q4¯-Q4Q5¯sinθ+Q5F¯=Q7F¯.
Q7Q4¯β, θ-Q4Q5¯θsinθ+Q5F¯β, θ=Q7F¯β, θ.

Metrics