Abstract

An intrinsic multiplexed laser interferometer is presented that allows for the simultaneous detection of acoustic waves by an array of fiber-optic sensors. The phase-modulated signals from each sensor are demodulated by use of an adaptive two-wave mixing setup. The light from each sensing fiber in the array is mixed with a reference beam in a single photorefractive crystal (PRC), and the output beams from the PRC are imaged onto separate photodetectors to create a multiplexed two-wave mixing (MTWM) system. The sensing fibers are embedded in graphite-epoxy composite panels, and detection of both acoustic emission and ultrasonic signals in these materials is demonstrated. The intrinsic MTWM system is an effective tool for the simultaneous demodulation of signals from a large fiber sensor array. Also, the adaptive nature of the MTWM setup obviates the need for active stabilization against ambient noise.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription