Abstract

Compact devices for wavelength division multiplexing and demultiplexing, believed to be novel, are presented. These devices are based on planar optics configurations, comprising multiplexed diffractive optical elements. The principle, design, and recording of these planar devices are described, including the fact that the recording is done at a single wavelength in the green region. Experimental procedures and results for planar devices that can handle three wavelengths in the visible as well as in the near infrared are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos, J. Bismuth, M. Sweeny, A. P. Kevorkian, J. M. Xu, “Superimposed grating wavelength division multiplexing in Ge-doped SiO2/Si planar waveguides,” Opt. Eng. 37, 717–720 (1998).
    [CrossRef]
  2. J.-F. Viens, C. L. Callender, J. P. Noad, L. A. Eldada, R. A. Norwood, “Polymer-based waveguide devices for WDM applications,” in Organic Photorefractives, Photoreceptors, Waveguides, and Fibers, S. Ducharme, D. H. Dunlap, R. A. Norwood, eds., Proc. SPIE3799, 202–213 (1999).
    [CrossRef]
  3. V. Minier, A. Kevorkian, J. M. Xu, “Superimposed phase gratings in planar optical waveguides for wavelength demultiplexing applications,” IEEE Photon. Technol. Lett. 5, 330–333 (1993).
    [CrossRef]
  4. M. Kajita, K. Kasahara, T. J. Kim, D. T. Neilson, I. Ogura, I. Redmond, E. Schenfeld, “Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems,” Appl. Opt. 37, 3746–3755 (1998).
    [CrossRef]
  5. J. Liu, R. T. Chen, “Path-reversed substrate-guided-wave optical interconnects for wavelength-division demultiplexing,” Appl. Opt. 38, 3046–3052 (1999).
    [CrossRef]
  6. E. Pawlowski, M. Ferstl, H. Hellmich, B. Kuhlow, C. Warmuth, J. R. Salgueiro, “Fabrication of a multichannel wavelength-division multiplexing-passive optical net demultiplexer with arrayed-waveguide gratings and diffractive optical elements,” Appl. Opt. 38, 3039–3045 (1999).
    [CrossRef]
  7. Y. K. Tsai, Y. T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–66 (1994).
  8. Y. K. Tsai, Y. T. Huang, D. C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582–5588 (1995).
    [CrossRef] [PubMed]
  9. J. Liu, R. T. Chen, “Practical wavelength division demultiplexer for short-wavelength local area networks,” in Optoelectronic Interconnects VI, J. P. Bristow, S. Tang, eds., Proc. SPIE3632, 273–284 (1999).
    [CrossRef]
  10. Y. Amitai, “Design of wavelength-division multiplexing/demultiplexing using substrate-mode holographic elements,” Opt. Commun. 98, 24–28 (1993).
    [CrossRef]
  11. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2948 (1969).
    [CrossRef]
  12. A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in du Pont’s new photopolymer materials,” in Practical Holography IV; Proceedings of the Meeting, Los Angeles, CA, Jan. 18, 19, 1990, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
  13. S. H. Lin, K. Y. Hsu, W.-Z. Chen, W.-T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
    [CrossRef]
  14. K. Winick, “Designing efficient aberration-free holographic lenses in the presence of a construction-reconstruction wavelength shift,” J. Opt. Soc. Am. 72, 143–148 (1982).
    [CrossRef]

1999 (2)

1998 (2)

M. Kajita, K. Kasahara, T. J. Kim, D. T. Neilson, I. Ogura, I. Redmond, E. Schenfeld, “Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems,” Appl. Opt. 37, 3746–3755 (1998).
[CrossRef]

A. Othonos, J. Bismuth, M. Sweeny, A. P. Kevorkian, J. M. Xu, “Superimposed grating wavelength division multiplexing in Ge-doped SiO2/Si planar waveguides,” Opt. Eng. 37, 717–720 (1998).
[CrossRef]

1995 (1)

1994 (1)

Y. K. Tsai, Y. T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–66 (1994).

1993 (2)

Y. Amitai, “Design of wavelength-division multiplexing/demultiplexing using substrate-mode holographic elements,” Opt. Commun. 98, 24–28 (1993).
[CrossRef]

V. Minier, A. Kevorkian, J. M. Xu, “Superimposed phase gratings in planar optical waveguides for wavelength demultiplexing applications,” IEEE Photon. Technol. Lett. 5, 330–333 (1993).
[CrossRef]

1982 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2948 (1969).
[CrossRef]

Amitai, Y.

Y. Amitai, “Design of wavelength-division multiplexing/demultiplexing using substrate-mode holographic elements,” Opt. Commun. 98, 24–28 (1993).
[CrossRef]

Bismuth, J.

A. Othonos, J. Bismuth, M. Sweeny, A. P. Kevorkian, J. M. Xu, “Superimposed grating wavelength division multiplexing in Ge-doped SiO2/Si planar waveguides,” Opt. Eng. 37, 717–720 (1998).
[CrossRef]

Callender, C. L.

J.-F. Viens, C. L. Callender, J. P. Noad, L. A. Eldada, R. A. Norwood, “Polymer-based waveguide devices for WDM applications,” in Organic Photorefractives, Photoreceptors, Waveguides, and Fibers, S. Ducharme, D. H. Dunlap, R. A. Norwood, eds., Proc. SPIE3799, 202–213 (1999).
[CrossRef]

Chen, R. T.

J. Liu, R. T. Chen, “Path-reversed substrate-guided-wave optical interconnects for wavelength-division demultiplexing,” Appl. Opt. 38, 3046–3052 (1999).
[CrossRef]

J. Liu, R. T. Chen, “Practical wavelength division demultiplexer for short-wavelength local area networks,” in Optoelectronic Interconnects VI, J. P. Bristow, S. Tang, eds., Proc. SPIE3632, 273–284 (1999).
[CrossRef]

Chen, W.-Z.

S. H. Lin, K. Y. Hsu, W.-Z. Chen, W.-T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
[CrossRef]

Eldada, L. A.

J.-F. Viens, C. L. Callender, J. P. Noad, L. A. Eldada, R. A. Norwood, “Polymer-based waveguide devices for WDM applications,” in Organic Photorefractives, Photoreceptors, Waveguides, and Fibers, S. Ducharme, D. H. Dunlap, R. A. Norwood, eds., Proc. SPIE3799, 202–213 (1999).
[CrossRef]

Ferstl, M.

Hellmich, H.

Hsu, K. Y.

S. H. Lin, K. Y. Hsu, W.-Z. Chen, W.-T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
[CrossRef]

Huang, Y. T.

Y. K. Tsai, Y. T. Huang, D. C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582–5588 (1995).
[CrossRef] [PubMed]

Y. K. Tsai, Y. T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–66 (1994).

Kajita, M.

Kasahara, K.

Kevorkian, A.

V. Minier, A. Kevorkian, J. M. Xu, “Superimposed phase gratings in planar optical waveguides for wavelength demultiplexing applications,” IEEE Photon. Technol. Lett. 5, 330–333 (1993).
[CrossRef]

Kevorkian, A. P.

A. Othonos, J. Bismuth, M. Sweeny, A. P. Kevorkian, J. M. Xu, “Superimposed grating wavelength division multiplexing in Ge-doped SiO2/Si planar waveguides,” Opt. Eng. 37, 717–720 (1998).
[CrossRef]

Kim, T. J.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2948 (1969).
[CrossRef]

Kuhlow, B.

Lin, S. H.

S. H. Lin, K. Y. Hsu, W.-Z. Chen, W.-T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
[CrossRef]

Liu, J.

J. Liu, R. T. Chen, “Path-reversed substrate-guided-wave optical interconnects for wavelength-division demultiplexing,” Appl. Opt. 38, 3046–3052 (1999).
[CrossRef]

J. Liu, R. T. Chen, “Practical wavelength division demultiplexer for short-wavelength local area networks,” in Optoelectronic Interconnects VI, J. P. Bristow, S. Tang, eds., Proc. SPIE3632, 273–284 (1999).
[CrossRef]

Mickish, D. J.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in du Pont’s new photopolymer materials,” in Practical Holography IV; Proceedings of the Meeting, Los Angeles, CA, Jan. 18, 19, 1990, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).

Minier, V.

V. Minier, A. Kevorkian, J. M. Xu, “Superimposed phase gratings in planar optical waveguides for wavelength demultiplexing applications,” IEEE Photon. Technol. Lett. 5, 330–333 (1993).
[CrossRef]

Neilson, D. T.

Noad, J. P.

J.-F. Viens, C. L. Callender, J. P. Noad, L. A. Eldada, R. A. Norwood, “Polymer-based waveguide devices for WDM applications,” in Organic Photorefractives, Photoreceptors, Waveguides, and Fibers, S. Ducharme, D. H. Dunlap, R. A. Norwood, eds., Proc. SPIE3799, 202–213 (1999).
[CrossRef]

Norwood, R. A.

J.-F. Viens, C. L. Callender, J. P. Noad, L. A. Eldada, R. A. Norwood, “Polymer-based waveguide devices for WDM applications,” in Organic Photorefractives, Photoreceptors, Waveguides, and Fibers, S. Ducharme, D. H. Dunlap, R. A. Norwood, eds., Proc. SPIE3799, 202–213 (1999).
[CrossRef]

Ogura, I.

Othonos, A.

A. Othonos, J. Bismuth, M. Sweeny, A. P. Kevorkian, J. M. Xu, “Superimposed grating wavelength division multiplexing in Ge-doped SiO2/Si planar waveguides,” Opt. Eng. 37, 717–720 (1998).
[CrossRef]

Pawlowski, E.

Redmond, I.

Salgueiro, J. R.

Schenfeld, E.

Smothers, W. K.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in du Pont’s new photopolymer materials,” in Practical Holography IV; Proceedings of the Meeting, Los Angeles, CA, Jan. 18, 19, 1990, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).

Su, D. C.

Y. K. Tsai, Y. T. Huang, D. C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582–5588 (1995).
[CrossRef] [PubMed]

Y. K. Tsai, Y. T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–66 (1994).

Sweeny, M.

A. Othonos, J. Bismuth, M. Sweeny, A. P. Kevorkian, J. M. Xu, “Superimposed grating wavelength division multiplexing in Ge-doped SiO2/Si planar waveguides,” Opt. Eng. 37, 717–720 (1998).
[CrossRef]

Trout, T. J.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in du Pont’s new photopolymer materials,” in Practical Holography IV; Proceedings of the Meeting, Los Angeles, CA, Jan. 18, 19, 1990, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).

Tsai, Y. K.

Y. K. Tsai, Y. T. Huang, D. C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582–5588 (1995).
[CrossRef] [PubMed]

Y. K. Tsai, Y. T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–66 (1994).

Viens, J.-F.

J.-F. Viens, C. L. Callender, J. P. Noad, L. A. Eldada, R. A. Norwood, “Polymer-based waveguide devices for WDM applications,” in Organic Photorefractives, Photoreceptors, Waveguides, and Fibers, S. Ducharme, D. H. Dunlap, R. A. Norwood, eds., Proc. SPIE3799, 202–213 (1999).
[CrossRef]

Warmuth, C.

Weber, A. M.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in du Pont’s new photopolymer materials,” in Practical Holography IV; Proceedings of the Meeting, Los Angeles, CA, Jan. 18, 19, 1990, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).

Whang, W.-T.

S. H. Lin, K. Y. Hsu, W.-Z. Chen, W.-T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
[CrossRef]

Winick, K.

Xu, J. M.

A. Othonos, J. Bismuth, M. Sweeny, A. P. Kevorkian, J. M. Xu, “Superimposed grating wavelength division multiplexing in Ge-doped SiO2/Si planar waveguides,” Opt. Eng. 37, 717–720 (1998).
[CrossRef]

V. Minier, A. Kevorkian, J. M. Xu, “Superimposed phase gratings in planar optical waveguides for wavelength demultiplexing applications,” IEEE Photon. Technol. Lett. 5, 330–333 (1993).
[CrossRef]

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2948 (1969).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. Minier, A. Kevorkian, J. M. Xu, “Superimposed phase gratings in planar optical waveguides for wavelength demultiplexing applications,” IEEE Photon. Technol. Lett. 5, 330–333 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

Y. Amitai, “Design of wavelength-division multiplexing/demultiplexing using substrate-mode holographic elements,” Opt. Commun. 98, 24–28 (1993).
[CrossRef]

Opt. Eng. (1)

A. Othonos, J. Bismuth, M. Sweeny, A. P. Kevorkian, J. M. Xu, “Superimposed grating wavelength division multiplexing in Ge-doped SiO2/Si planar waveguides,” Opt. Eng. 37, 717–720 (1998).
[CrossRef]

Optik (Stuttgart) (1)

Y. K. Tsai, Y. T. Huang, D. C. Su, “A reflection-type substrate-mode grating structure for wavelength-division-multi/demultiplexing,” Optik (Stuttgart) 97, 62–66 (1994).

Other (4)

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in du Pont’s new photopolymer materials,” in Practical Holography IV; Proceedings of the Meeting, Los Angeles, CA, Jan. 18, 19, 1990, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).

S. H. Lin, K. Y. Hsu, W.-Z. Chen, W.-T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
[CrossRef]

J.-F. Viens, C. L. Callender, J. P. Noad, L. A. Eldada, R. A. Norwood, “Polymer-based waveguide devices for WDM applications,” in Organic Photorefractives, Photoreceptors, Waveguides, and Fibers, S. Ducharme, D. H. Dunlap, R. A. Norwood, eds., Proc. SPIE3799, 202–213 (1999).
[CrossRef]

J. Liu, R. T. Chen, “Practical wavelength division demultiplexer for short-wavelength local area networks,” in Optoelectronic Interconnects VI, J. P. Bristow, S. Tang, eds., Proc. SPIE3632, 273–284 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Planar optics building block for a WDM system.

Fig. 2
Fig. 2

Schematic configuration for a planar WDM or WDDM device.

Fig. 3
Fig. 3

Number of wavelength channels and their separation as a function of recording medium thickness d.

Fig. 4
Fig. 4

Calculated diffraction efficiency as a function of wavelength for planar DOEs: (a) λ l = 647 nm, d = 20 µm; (b) λ l = 1550 nm, d = 80 µm.

Fig. 5
Fig. 5

Calculated diffraction efficiency as a function of wavelength for a planar DOE that is illuminated with an incident beam oriented at a slant angle λ l = 1550 nm.

Fig. 6
Fig. 6

Diffraction efficiency as a function of wavelength for a planar DOE designed to operate at λ = 633 nm.

Fig. 7
Fig. 7

Diffraction efficiency as a function of readout angle for a planar DOE designed to operate at λ = 676 nm.

Fig. 8
Fig. 8

Diffraction efficiency as a function of wavelength for a multiple input DOE.

Fig. 9
Fig. 9

Diffraction efficiency and cross talk for the full WDDM configuration with visible wavelengths.

Fig. 10
Fig. 10

Experimental and theoretical diffraction efficiency as a function of wavelength for a DOE designed to operate at λ = 1550 nm.

Fig. 11
Fig. 11

Experimental and theoretical diffraction efficiency as a function of wavelength for a DOE designed to operate at λ = 1550 nm.

Tables (1)

Tables Icon

Table 1 Diffraction Efficiency and Cross Talk of Each DOE for Three Visible Wavelengthsa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η=11+1-ξ2/ν2sinh2ν2-ξ2,
ν=iπΔnidλicos αc cos αd1/2,
ξ=-θd2 cos αd,
Λi=λi2n sinαd2.
i=1Nchn ΔniΔnmax.
Δni=-jλicos αd2d,
Δλi=±1+νi2π2λi2 cos αd2nd sin2αd2.
Δλi=5λi2 cos αd4nd sin2αd2.
νpνr¯·s¯=νcos3αc+αd.
αc=-αd/3.

Metrics