Abstract

We propose sealing techniques for medical hollow fibers to protect the inner surface of fibers from debris or water that scatters from targets. First, hollow fibers are sealed with a film of polymer that is easily formed by use of a dipping technique. The transmission loss of 20-µm-thick sealing film was 0.2 dB for Er:YAG laser light, and the maximum energy that is available for the film was 180 mJ. Second, a sealed glass cap was applied to the output end of hollow fiber. The silica-glass cap with a wall thickness of 400 µm shows a transmission loss of 0.5 dB and was not damaged by radiation of 400-mJ energy pulses.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Lasers Surg. Med. 12, 125–130 (1992).
    [CrossRef] [PubMed]
  2. H. Jelı́nková, T. Dostálová, L. Dolezalová, O. Krejsa, K. Hamal, J. Kubelka, S. Procházka, “Comparison of preparation speed of Er:YAG laser and conventional drilling machine,” in Lasers in Dentistry III, H. A. Wigdor, J. D. Featherstone, P. Rechmann, eds., Proc. SPIE2973, 2–10 (1997).
    [CrossRef]
  3. R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
    [CrossRef] [PubMed]
  4. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef] [PubMed]
  5. Y. Wang, Y. Matsuura, M. Miyagi, “Robust hollow devices and waveguides for Er:YAG laser radiation,” Opt. Laser Technol. 29, 449–453 (1997).
    [CrossRef]
  6. I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
    [CrossRef] [PubMed]
  7. Y. Abe, Y. W. Shi, M. Miyagi, “Flexible small-bore hollow fibers with an inner polymer coating,” Opt. Lett. 25, 150–152 (2000).
    [CrossRef]
  8. Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, H. Uyama, “Cyclic olefin polymer-coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37, 7758–7762 (1998).
    [CrossRef]
  9. Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1997).
    [CrossRef]
  10. Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
    [CrossRef] [PubMed]
  11. Y. Wang, M. Miyagi, “Simultaneous measurement of optical constants of dispersive material at visible and infrared wavelengths,” Appl. Opt. 36, 877–884 (1997).
    [CrossRef] [PubMed]
  12. J. Brandrup, E. H. Immergut, eds., Polymer Handbook, 3rd ed. (Wiley, New York, 1989).
  13. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ., Cambridge, UK, 1997).
  14. W. G. Driscoll, ed., Handbook of Optics (McGraw-Hill, New York, 1978).
  15. A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 mm,” Opt. Laser Technol. 19, 214–216 (1987).
    [CrossRef]

2000 (1)

1998 (1)

1997 (4)

1996 (1)

1995 (1)

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

1992 (1)

R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Lasers Surg. Med. 12, 125–130 (1992).
[CrossRef] [PubMed]

1990 (1)

1987 (1)

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 mm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Abe, Y.

Born, M.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ., Cambridge, UK, 1997).

Croitoru, N.

Dolezalová, L.

H. Jelı́nková, T. Dostálová, L. Dolezalová, O. Krejsa, K. Hamal, J. Kubelka, S. Procházka, “Comparison of preparation speed of Er:YAG laser and conventional drilling machine,” in Lasers in Dentistry III, H. A. Wigdor, J. D. Featherstone, P. Rechmann, eds., Proc. SPIE2973, 2–10 (1997).
[CrossRef]

Dostálová, T.

H. Jelı́nková, T. Dostálová, L. Dolezalová, O. Krejsa, K. Hamal, J. Kubelka, S. Procházka, “Comparison of preparation speed of Er:YAG laser and conventional drilling machine,” in Lasers in Dentistry III, H. A. Wigdor, J. D. Featherstone, P. Rechmann, eds., Proc. SPIE2973, 2–10 (1997).
[CrossRef]

Dror, J.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

Ertl, T.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Gannot, I.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

Hamal, K.

H. Jelı́nková, T. Dostálová, L. Dolezalová, O. Krejsa, K. Hamal, J. Kubelka, S. Procházka, “Comparison of preparation speed of Er:YAG laser and conventional drilling machine,” in Lasers in Dentistry III, H. A. Wigdor, J. D. Featherstone, P. Rechmann, eds., Proc. SPIE2973, 2–10 (1997).
[CrossRef]

Harrington, J. A.

Hibst, R.

R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Lasers Surg. Med. 12, 125–130 (1992).
[CrossRef] [PubMed]

Hongo, A.

Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 mm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Inberg, A.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Jeli´nková, H.

H. Jelı́nková, T. Dostálová, L. Dolezalová, O. Krejsa, K. Hamal, J. Kubelka, S. Procházka, “Comparison of preparation speed of Er:YAG laser and conventional drilling machine,” in Lasers in Dentistry III, H. A. Wigdor, J. D. Featherstone, P. Rechmann, eds., Proc. SPIE2973, 2–10 (1997).
[CrossRef]

Karasawa, S.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 mm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Kato, Y.

Kozodoy, R. L.

Krejsa, O.

H. Jelı́nková, T. Dostálová, L. Dolezalová, O. Krejsa, K. Hamal, J. Kubelka, S. Procházka, “Comparison of preparation speed of Er:YAG laser and conventional drilling machine,” in Lasers in Dentistry III, H. A. Wigdor, J. D. Featherstone, P. Rechmann, eds., Proc. SPIE2973, 2–10 (1997).
[CrossRef]

Kubelka, J.

H. Jelı́nková, T. Dostálová, L. Dolezalová, O. Krejsa, K. Hamal, J. Kubelka, S. Procházka, “Comparison of preparation speed of Er:YAG laser and conventional drilling machine,” in Lasers in Dentistry III, H. A. Wigdor, J. D. Featherstone, P. Rechmann, eds., Proc. SPIE2973, 2–10 (1997).
[CrossRef]

Matsuura, Y.

Miura, D.

Miyagi, M.

Müller, G. J.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Nishida, S.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 mm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Pagkalinawan, A. T.

Procházka, S.

H. Jelı́nková, T. Dostálová, L. Dolezalová, O. Krejsa, K. Hamal, J. Kubelka, S. Procházka, “Comparison of preparation speed of Er:YAG laser and conventional drilling machine,” in Lasers in Dentistry III, H. A. Wigdor, J. D. Featherstone, P. Rechmann, eds., Proc. SPIE2973, 2–10 (1997).
[CrossRef]

Sakamoto, K.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 mm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Sato, S.

Schründer, S.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Shi, Y. W.

Shimomura, T.

Taniwaki, M.

Tschepe, J.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Uyama, H.

Wang, Y.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ., Cambridge, UK, 1997).

Appl. Opt. (5)

IEEE Trans. Biomed. Eng. (1)

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Lasers Surg. Med. 12, 125–130 (1992).
[CrossRef] [PubMed]

Opt. Laser Technol. (2)

Y. Wang, Y. Matsuura, M. Miyagi, “Robust hollow devices and waveguides for Er:YAG laser radiation,” Opt. Laser Technol. 29, 449–453 (1997).
[CrossRef]

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 mm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Opt. Lett. (2)

Other (4)

H. Jelı́nková, T. Dostálová, L. Dolezalová, O. Krejsa, K. Hamal, J. Kubelka, S. Procházka, “Comparison of preparation speed of Er:YAG laser and conventional drilling machine,” in Lasers in Dentistry III, H. A. Wigdor, J. D. Featherstone, P. Rechmann, eds., Proc. SPIE2973, 2–10 (1997).
[CrossRef]

J. Brandrup, E. H. Immergut, eds., Polymer Handbook, 3rd ed. (Wiley, New York, 1989).

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ., Cambridge, UK, 1997).

W. G. Driscoll, ed., Handbook of Optics (McGraw-Hill, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Sealed polymer film formed at the end of a hollow fiber with an inner diameter of 0.7 mm and (b) the sealed end of a glass cap with an inner diameter of 1 mm.

Fig. 2
Fig. 2

Transmission losses for various polymer-sealing films formed at the end of glass capillaries.

Fig. 3
Fig. 3

Energy capabilities of polymer-sealing films as a function of thickness.

Fig. 4
Fig. 4

Transmission losses of Pyrex (filled circles) and silica-glass (open circles) sealing caps.

Fig. 5
Fig. 5

Energy capabilities of Pyrex sealing caps as a function of wall thickness.

Fig. 6
Fig. 6

Measured profiles of a laser beam emitted from hollow fibers that were (a) unsealed and (b) sealed with the a 20-µm-thick FCP film.

Fig. 7
Fig. 7

(a) Surface and (b) cross section of meat ablated with Er:YAG laser pulses by use of a hollow fiber capped with a Pyrex glass seal.

Fig. 8
Fig. 8

Hole on the enamel of a cow tooth induced by Er:YAG laser light radiation emitted from a hollow fiber capped with a silica-glass-sealed cap. The diameter and the depth of the hole are 1.2 and 1.5 mm, respectively.

Tables (3)

Tables Icon

Table 1 Physical and Optical Properties of Polymers

Tables Icon

Table 2 Beam Divergences of Polymer- and Glass-Sealing Caps

Tables Icon

Table 3 Optical Properties of Sealing Film and Glass Capsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f=1n-11r1-1r2+n-12ntr1r2,

Metrics