Abstract

A compact multicolor beam illuminator and a compact multicolor beam expander are presented. The illuminator performs the dual task of demultiplexing a narrow red-green-blue (RGB) input beam into three separate beams, each of a different color, and expanding them to yield three separate magnified plane waves. The beam expander expands a narrow RGB input beam into a single magnified RGB plane wave. The design and recording procedures, along with experimental results for a beam illuminator and a beam expander with a magnification of ∼3, are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Chapman, N. R. Heckenberg, “Use of a beam expanding telescope in grating-tuned waveguide CO2 laser,” Int. J. Infrared Millim. Waves 8, 783–791 (1987).
    [CrossRef]
  2. M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, J. L. Demiguel, “Short-cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photonics Technol. Lett. 3, 418–420 (1991).
    [CrossRef]
  3. M. Takahashi, T. Ohntoshi, “Finite-difference time-domain analysis of laser diodes integrated with tapered beam-expanders,” IEEE Photonics Technol. Lett. 11, 524–526 (1999).
    [CrossRef]
  4. F. Martinez, G. Wylangowski, C. D. Hussy, F. P. Payne, “Design and implementation considerations for a practical self-aligned single-mode fibre-horn beam expander,” presented at the 13th European Conference on Optical Communication, Helsink, Finland, 13–17 September 1987, Vol. 1 of Technical Digest, 379–382.
  5. S. K. Gayen, M. E. Zevallos, B. B. Das, R. R. Alfano, “Time-sliced, two-dimensional, near-infrared imaging of normal and malignant human breast tissues,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 230–231.
  6. Wu Jiang, D. L. Shealy, K. M. Baker, “Physical optics analysis of the performance of a holographic projection system,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 227–234 (1995).
    [CrossRef]
  7. P. Hariharan, “Beam expander for making large rainbow holograms,” Appl. Opt. 26, 1815–1818 (1987).
    [CrossRef] [PubMed]
  8. F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
    [CrossRef]
  9. M. S. Scholl, G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 29, 271–278 (1990).
    [CrossRef]
  10. R. K. Kustuk, M. Kato, Y. T. Huang, “Substrate mode holograms for optical interconnects,” in Optical Computing, Vol. 9 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 168–171.
  11. A. A. Friesem, Y. Amitai, “Planar diffractive elements for compact optics,” in Trends in Optics, A. Consortini, ed. (Academic, San Diego, 1996), pp. 125–144.
    [CrossRef]
  12. I. Shariv, Y. Amitai, A. A. Friesem, “Compact holographic beam expander,” Opt. Lett. 18, 1268–1270 (1993).
    [CrossRef] [PubMed]
  13. H. Kogelnik, “Coupled wave theory for thick holograms and their applications,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  14. F. Lin, E. M. Strzelecki, T. Jannson, “Optical multiplanar VLSI interconnects based on multiplexed waveguide holograms,” Appl. Opt. 29, 1126–1133 (1990).
    [CrossRef] [PubMed]
  15. L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981), Chap. 4.
  16. S. H. Lin, K. H. Su, W.-Z. Chen, W. T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
    [CrossRef]

1999

M. Takahashi, T. Ohntoshi, “Finite-difference time-domain analysis of laser diodes integrated with tapered beam-expanders,” IEEE Photonics Technol. Lett. 11, 524–526 (1999).
[CrossRef]

1993

1992

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

1991

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, J. L. Demiguel, “Short-cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photonics Technol. Lett. 3, 418–420 (1991).
[CrossRef]

1990

1987

M. Chapman, N. R. Heckenberg, “Use of a beam expanding telescope in grating-tuned waveguide CO2 laser,” Int. J. Infrared Millim. Waves 8, 783–791 (1987).
[CrossRef]

P. Hariharan, “Beam expander for making large rainbow holograms,” Appl. Opt. 26, 1815–1818 (1987).
[CrossRef] [PubMed]

1969

H. Kogelnik, “Coupled wave theory for thick holograms and their applications,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Alfano, R. R.

S. K. Gayen, M. E. Zevallos, B. B. Das, R. R. Alfano, “Time-sliced, two-dimensional, near-infrared imaging of normal and malignant human breast tissues,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 230–231.

Amitai, Y.

I. Shariv, Y. Amitai, A. A. Friesem, “Compact holographic beam expander,” Opt. Lett. 18, 1268–1270 (1993).
[CrossRef] [PubMed]

A. A. Friesem, Y. Amitai, “Planar diffractive elements for compact optics,” in Trends in Optics, A. Consortini, ed. (Academic, San Diego, 1996), pp. 125–144.
[CrossRef]

Baker, K. M.

Wu Jiang, D. L. Shealy, K. M. Baker, “Physical optics analysis of the performance of a holographic projection system,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 227–234 (1995).
[CrossRef]

Chapman, M.

M. Chapman, N. R. Heckenberg, “Use of a beam expanding telescope in grating-tuned waveguide CO2 laser,” Int. J. Infrared Millim. Waves 8, 783–791 (1987).
[CrossRef]

Chen, W.-Z.

S. H. Lin, K. H. Su, W.-Z. Chen, W. T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
[CrossRef]

Chien, M.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, J. L. Demiguel, “Short-cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photonics Technol. Lett. 3, 418–420 (1991).
[CrossRef]

Christensen, F. E.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Cooke, D. J.

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981), Chap. 4.

Das, B. B.

S. K. Gayen, M. E. Zevallos, B. B. Das, R. R. Alfano, “Time-sliced, two-dimensional, near-infrared imaging of normal and malignant human breast tissues,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 230–231.

Demiguel, J. L.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, J. L. Demiguel, “Short-cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photonics Technol. Lett. 3, 418–420 (1991).
[CrossRef]

Frederiksen, P.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Friesem, A. A.

I. Shariv, Y. Amitai, A. A. Friesem, “Compact holographic beam expander,” Opt. Lett. 18, 1268–1270 (1993).
[CrossRef] [PubMed]

A. A. Friesem, Y. Amitai, “Planar diffractive elements for compact optics,” in Trends in Optics, A. Consortini, ed. (Academic, San Diego, 1996), pp. 125–144.
[CrossRef]

Gayen, S. K.

S. K. Gayen, M. E. Zevallos, B. B. Das, R. R. Alfano, “Time-sliced, two-dimensional, near-infrared imaging of normal and malignant human breast tissues,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 230–231.

Grundsoe, P.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Hall, C.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Hariharan, P.

Heckenberg, N. R.

M. Chapman, N. R. Heckenberg, “Use of a beam expanding telescope in grating-tuned waveguide CO2 laser,” Int. J. Infrared Millim. Waves 8, 783–791 (1987).
[CrossRef]

Horntrup, A.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Huang, Y. T.

R. K. Kustuk, M. Kato, Y. T. Huang, “Substrate mode holograms for optical interconnects,” in Optical Computing, Vol. 9 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 168–171.

Hussy, C. D.

F. Martinez, G. Wylangowski, C. D. Hussy, F. P. Payne, “Design and implementation considerations for a practical self-aligned single-mode fibre-horn beam expander,” presented at the 13th European Conference on Optical Communication, Helsink, Finland, 13–17 September 1987, Vol. 1 of Technical Digest, 379–382.

Jacobsen, E.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Jannson, T.

Jiang, Wu

Wu Jiang, D. L. Shealy, K. M. Baker, “Physical optics analysis of the performance of a holographic projection system,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 227–234 (1995).
[CrossRef]

Kato, M.

R. K. Kustuk, M. Kato, Y. T. Huang, “Substrate mode holograms for optical interconnects,” in Optical Computing, Vol. 9 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 168–171.

Koch, T. L.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, J. L. Demiguel, “Short-cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photonics Technol. Lett. 3, 418–420 (1991).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick holograms and their applications,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Koren, U.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, J. L. Demiguel, “Short-cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photonics Technol. Lett. 3, 418–420 (1991).
[CrossRef]

Kustuk, R. K.

R. K. Kustuk, M. Kato, Y. T. Huang, “Substrate mode holograms for optical interconnects,” in Optical Computing, Vol. 9 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 168–171.

Lawrence, G. N.

M. S. Scholl, G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 29, 271–278 (1990).
[CrossRef]

Lewis, R.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Lin, F.

Lin, S. H.

S. H. Lin, K. H. Su, W.-Z. Chen, W. T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
[CrossRef]

Martinez, F.

F. Martinez, G. Wylangowski, C. D. Hussy, F. P. Payne, “Design and implementation considerations for a practical self-aligned single-mode fibre-horn beam expander,” presented at the 13th European Conference on Optical Communication, Helsink, Finland, 13–17 September 1987, Vol. 1 of Technical Digest, 379–382.

Miller, B. I.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, J. L. Demiguel, “Short-cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photonics Technol. Lett. 3, 418–420 (1991).
[CrossRef]

Nilsson, C.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Ohntoshi, T.

M. Takahashi, T. Ohntoshi, “Finite-difference time-domain analysis of laser diodes integrated with tapered beam-expanders,” IEEE Photonics Technol. Lett. 11, 524–526 (1999).
[CrossRef]

Oron, M.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, J. L. Demiguel, “Short-cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photonics Technol. Lett. 3, 418–420 (1991).
[CrossRef]

Orup, P.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Payne, F. P.

F. Martinez, G. Wylangowski, C. D. Hussy, F. P. Payne, “Design and implementation considerations for a practical self-aligned single-mode fibre-horn beam expander,” presented at the 13th European Conference on Optical Communication, Helsink, Finland, 13–17 September 1987, Vol. 1 of Technical Digest, 379–382.

Schnopper, H. W.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Scholl, M. S.

M. S. Scholl, G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 29, 271–278 (1990).
[CrossRef]

Shariv, I.

Shealy, D. L.

Wu Jiang, D. L. Shealy, K. M. Baker, “Physical optics analysis of the performance of a holographic projection system,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 227–234 (1995).
[CrossRef]

Solymar, L.

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981), Chap. 4.

Strzelecki, E. M.

Su, K. H.

S. H. Lin, K. H. Su, W.-Z. Chen, W. T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
[CrossRef]

Takahashi, M.

M. Takahashi, T. Ohntoshi, “Finite-difference time-domain analysis of laser diodes integrated with tapered beam-expanders,” IEEE Photonics Technol. Lett. 11, 524–526 (1999).
[CrossRef]

Whang, W. T.

S. H. Lin, K. H. Su, W.-Z. Chen, W. T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
[CrossRef]

Wylangowski, G.

F. Martinez, G. Wylangowski, C. D. Hussy, F. P. Payne, “Design and implementation considerations for a practical self-aligned single-mode fibre-horn beam expander,” presented at the 13th European Conference on Optical Communication, Helsink, Finland, 13–17 September 1987, Vol. 1 of Technical Digest, 379–382.

Young, M. G.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, J. L. Demiguel, “Short-cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photonics Technol. Lett. 3, 418–420 (1991).
[CrossRef]

Zevallos, M. E.

S. K. Gayen, M. E. Zevallos, B. B. Das, R. R. Alfano, “Time-sliced, two-dimensional, near-infrared imaging of normal and malignant human breast tissues,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 230–231.

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick holograms and their applications,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

IEEE Photonics Technol. Lett.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, J. L. Demiguel, “Short-cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photonics Technol. Lett. 3, 418–420 (1991).
[CrossRef]

M. Takahashi, T. Ohntoshi, “Finite-difference time-domain analysis of laser diodes integrated with tapered beam-expanders,” IEEE Photonics Technol. Lett. 11, 524–526 (1999).
[CrossRef]

Int. J. Infrared Millim. Waves

M. Chapman, N. R. Heckenberg, “Use of a beam expanding telescope in grating-tuned waveguide CO2 laser,” Int. J. Infrared Millim. Waves 8, 783–791 (1987).
[CrossRef]

Opt. Eng.

M. S. Scholl, G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 29, 271–278 (1990).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

F. E. Christensen, A. Horntrup, P. Frederiksen, C. Nilsson, P. Grundsoe, P. Orup, E. Jacobsen, H. W. Schnopper, R. Lewis, C. Hall, “A beam expander facility for studying x-ray optics,” Rev. Sci. Instrum. 63, 1168–1171 (1992).
[CrossRef]

Other

R. K. Kustuk, M. Kato, Y. T. Huang, “Substrate mode holograms for optical interconnects,” in Optical Computing, Vol. 9 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 168–171.

A. A. Friesem, Y. Amitai, “Planar diffractive elements for compact optics,” in Trends in Optics, A. Consortini, ed. (Academic, San Diego, 1996), pp. 125–144.
[CrossRef]

F. Martinez, G. Wylangowski, C. D. Hussy, F. P. Payne, “Design and implementation considerations for a practical self-aligned single-mode fibre-horn beam expander,” presented at the 13th European Conference on Optical Communication, Helsink, Finland, 13–17 September 1987, Vol. 1 of Technical Digest, 379–382.

S. K. Gayen, M. E. Zevallos, B. B. Das, R. R. Alfano, “Time-sliced, two-dimensional, near-infrared imaging of normal and malignant human breast tissues,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 230–231.

Wu Jiang, D. L. Shealy, K. M. Baker, “Physical optics analysis of the performance of a holographic projection system,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 227–234 (1995).
[CrossRef]

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981), Chap. 4.

S. H. Lin, K. H. Su, W.-Z. Chen, W. T. Whang, “Exposure schedule for multiplexing holograms in photopolymer,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 100–106 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic configuration of a monochromatic diffractive beam expander: (a) unfolded configuration, (b) folded, planar configuration. H1 and H2 are two diffractive lenses with focal lengths f 1 and f 2, respectively. D 1 and D 2 are the input and the output beam diameters, respectively. In the folded configuration of (b), light propagates between the two diffractive lenses inside the substrate by total internal reflection.

Fig. 2
Fig. 2

Planar configuration of compact RGB beam (a) illuminator, (b) expander. In (a) composite diffractive lens H1RGB expands and demultiplexes the incoming RGB light and sends the three components to three different diffractive lenses, H2R, H2G, and H2B, from which they emerge as magnified monochromatic plane waves. In (b) composite diffractive lens H1RGB expands the incoming RGB light and sends it to H2RGB, another composite diffractive lens, from which a magnified RGB plane waves emerges.

Fig. 3
Fig. 3

Geometry of a planar diffractive lens and associated rays: f is the focal length of the lens, l is the thickness of the substrate, t is the thickness of the recording material, and x and x′ are lateral coordinates along the lens, corresponding to light rays of angles θ and θ′, respectively.

Fig. 4
Fig. 4

Calculated diffraction efficiency as a function of the lateral coordinate for a planar diffractive lens designed to operate with λ = 647 nm.

Fig. 5
Fig. 5

Calculated undesired diffraction efficiency (cross talk) as a function of the lateral coordinate for a planar diffractive lens designed to operate with λ = 647 nm.

Fig. 6
Fig. 6

Calculated diffraction efficiency of H1RGB as a function of wavelength.

Fig. 7
Fig. 7

Calculated chromatic cross talk between the different wavelengths at H1RGB as a function of the lateral coordinate.

Fig. 8
Fig. 8

Recording setup for one DOE. The interference pattern of a perpendicularly incident plane wave and an obliquely incident spherical wave is recorded on photopolymer. The prism is needed to ensure a large enough oblique angle for the spherical wave. The prism and the photopolymer are positioned so that the focal point of the spherical wave coincides with the surface of the prism in order to minimize aberrations introduced in the spherical wave by the prism surface.

Fig. 9
Fig. 9

Experimental diffraction efficiency for a representative H1RGB as a function of wavelength.

Fig. 10
Fig. 10

Photograph of the input and the output beams of the compact RGB beam illuminator.

Fig. 11
Fig. 11

Input and output beams of the compact RGB beam expander: (a) photograph of the light distribution, (b) intensity scans for the RGB wavelengths.

Tables (1)

Tables Icon

Table 1 Measured Chromatic Cross Talk of H1RGB

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

θ>sin-11/n,
2Δnitλicos θ=2m-1
ΔniTE=2m-1λicos θ2t.
ΔniTM=ΔniTEcos θ.
for λi=488 nm, ΔniTE=0.0092, ΔniTM=0.016;for λi=514.5 nm, ΔniTE=0.0097, ΔniTM=0.017;for λi=647 nm, ΔniTE=0.0123, ΔniTM=0.0214.
i=1N ΔniΔnmax
Δλi34ntλi2sinθ/2tanθ/2.
for λ1=488 nm, Δλ=14 nm;for λ1=514.5 nm, Δλ=16 nm;for λ1=647 nm, Δλ=25 nm.

Metrics