Abstract

A detailed discussion of linear excitation schemes for IR planar-induced fluorescence (PLIF) imaging of CO and CO2 is presented. These excitation schemes are designed to avoid laser scattering, absorption interferences, and background luminosity while an easily interpreted PLIF signal is generated. The output of a tunable optical parametric amplifier excites combination or overtone transitions in these species, and InSb IR cameras collect fluorescence from fundamental transitions. An analysis of the dynamics of pulsed laser excitation demonstrates that rotational energy transfer is prominent; hence the excitation remains in the linear regime, and standard PLIF postprocessing techniques may be used to correct for laser sheet inhomogeneities. Analysis of the vibrational energy-transfer processes for CO show that microsecond-scale integration times effectively freeze the vibrational populations, and the fluorescence quantum yield following nanosecond-pulse excitation can be made nearly independent of the collisional environment. Sensitivity calculations show that the single-shot imaging of nascent CO in flames is possible. Signal interpretation for CO2 is more complicated, owing to strongly temperature-dependent absorption cross sections and strongly collider-dependent fluorescence quantum yield. These complications limit linear CO2 IR PLIF imaging schemes to qualitative visualization but indicate that increased signal level and improved quantitative accuracy can be achieved through consideration of laser-saturated excitation schemes.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
    [CrossRef]
  2. B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
    [CrossRef]
  3. J. M. Seitzman, R. K. Hanson, “Planar fluorescence imaging in gases,” in Experimental Methods for Flows with Combustion, A. Taylor, ed. (Academic, London, 1993).
  4. M. B. Long, D. C. Fourguette, M. C. Escoda, “Instantaneous Ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983).
    [CrossRef] [PubMed]
  5. J. M. Seitzman, J. Haumann, R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
    [CrossRef] [PubMed]
  6. N. Georgiev, M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
    [CrossRef]
  7. G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
    [CrossRef]
  8. W. P. Partridge, J. R. Reisel, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric-oxide in an inverse diffusion flame,” Combust. Flame 116, 282–290 (1999).
    [CrossRef]
  9. M. Alden, P. Grafstrom, H. Lundberg, S. Svanberg, “Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode array detection,” Opt. Lett. 8, 241–243 (1983).
    [CrossRef]
  10. B. Hiller, R. K. Hanson, “Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence,” Appl. Opt. 27, 33–48 (1988).
    [CrossRef] [PubMed]
  11. J. Rehm, P. H. Paul, “Reaction rate imaging,” Proc. Combust. Inst. 28, 1775–1782 (2000).
    [CrossRef]
  12. K. Kohse-Hoinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
    [CrossRef]
  13. M. Alden, “Laser spectroscopic techniques for combustion diagnostics,” Combust. Sci. Technol. 149, 1–18 (1999).
    [CrossRef]
  14. B. J. Kirby, R. K. Hanson, “CO2 imaging using saturated planar laser-induced vibrational fluorescence,” Appl. Opt. 20, 6136–6144 (2001).
    [CrossRef]
  15. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic crossflow,” Appl. Opt. 32, 7532–7545 (1993).
    [CrossRef] [PubMed]
  16. D. F. Starr, J. K. Hancock, “Vibrational energy transfer in CO2-CO mixtures from 163 to 406°K,” J. Chem. Phys. 63, 4730–4734 (1975).
    [CrossRef]
  17. Jack Finzi, C. Bradley Moore, “Relaxation of CO2(1001), CO2(0201), and N2O(1001) vibrational levels by near-resonant V → V energy transfer,” J. Chem. Phys. 63, 2285–2288 (1975).
    [CrossRef]
  18. L. Doyennette, M. Margottin-Maclou, A. Chakroun, H. Gueguen, L. Henry, “Vibrational energy transfer from (0001) level of 14N2O and 12CO2 to (m, nl,1) levels of these molecules and of their isotopic species,” J. Chem. Phys. 62, 440–447 (1975).
    [CrossRef]
  19. J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, J. W. Hahn, “Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. 161, 232–238 (1989).
    [CrossRef]
  20. G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
    [CrossRef]
  21. T. Nakazawa, M. Tanaka, “Measurements of intensities and self- and foreign-gas-broadened half-widths of spectral lines in the CO fundamental band,” J. Quant. Spectrosc. Radiat. Transfer 28, 409–416 (1982).
    [CrossRef]
  22. J. M. Hartmann, L. Rosenmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of CO line broadening by H2O, N2, O2, and CO2 in the 200–3000-K temperature range,” Appl. Opt. 27, 3063–3065 (1988).
    [CrossRef] [PubMed]
  23. J-P. Bouanich, “Determination experimentale des largeurs et des deplacements des raies de la bande 0–2 de CO perturbe par les gas rares (He, Ne, Ar, Kr, Xe),” J. Quant. Spectrosc. Radiat. Transfer 12, 1609–1615 (1972).
    [CrossRef]
  24. J. J. Belbruno, J. Gelfand, H. Rabitz, “Collision dynamical information from pressure broadening measurements: application to carbon monoxide,” J. Chem. Phys. 78, 3990–3998 (1983).
    [CrossRef]
  25. P. L. Varghese, R. K. Hanson, “Room-temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
    [CrossRef]
  26. R. J. Kee, F. M. Rupley, J. A. Miller, “Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Tech. Rep. SAND89-8009B, (Sandia National Laboratories, Livermore, Calif., 1992).
  27. J. T. Yardley, “Introduction to Molecular Energy Transfer (Academic, New York, 1980).
  28. R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
    [CrossRef]
  29. D. F. Starr, J. K. Hancock, W. H. Green, “Vibrational deactivation of carbon monoxide by hydrogen and nitrogen from 100 to 650 degrees K,” J. Chem. Phys. 61, 5421–5425 (1974).
    [CrossRef]
  30. T. C. Price, D. C. Allen, C. J. S. M. Simpson, “Vibrational deactivation of CO (v=1) by O2 measured between 300 and 80 K,” Chem. Phys. Lett. 53, 182–184 (1978).
    [CrossRef]
  31. D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Low-temperature vibrational-relaxation of carbon-monoxide by light mass species,” Chem. Phys. 41, 449–460 (1979).
    [CrossRef]
  32. M. Cacciatore, G. D. Billing, “Semiclassical calculation of VV and VT rate coefficients in CO,” Chem. Phys. 58, 395–407 (1981).
    [CrossRef]
  33. G. D. Billing, E. R. Fisher, “VV and VT-rate coefficients in N2 by a quantum-classical model,” Chem. Phys. 43, 395–401 (1979).
    [CrossRef]
  34. G. D. Billing, R. E. Kolesnick, “Vibrational relaxation of oxygen. State to state rate constants,” Chem. Phys. Lett. 200, 382–386 (1992).
    [CrossRef]
  35. R. T. V. Kung, R. E. Center, “High temperature vibrational relaxation of H2O by H2O, He, Ar, and N2,” J. Chem. Phys. 62, 2187–2194 (1975).
    [CrossRef]
  36. D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Vibrational deactivation of the bending mode of CO2 measured between 1500 K and 150 K,” Chem. Phys. Lett. 45, 183–187 (1977).
    [CrossRef]
  37. H. T. Powell, “Vibrational relaxation of carbon monoxide using a pulse discharge II T=100, 300, 500 K,” J. Chem. Phys. 63, 2635–2645 (1975).
    [CrossRef]
  38. G. D. Billing, “Vibration/vibration energy transfer in CO colliding with 14N2, 14N15N and 15N2,” Chem. Phys. 50, 165–173 (1980).
    [CrossRef]
  39. M. Cacciatore, M. Capitelli, G. D. Billing, “Theoretical semiclassical investigation of the vibrational relaxation of CO colliding with 14N2,” Chem. Phys. 89, 17–31 (1984).
    [CrossRef]
  40. J. C. Stephenson, E. R. Mosburg, “Vibrational energy transfer in CO from 100 to 300 °K,” J. Chem. Phys. 60, 3562–3566 (1974).
    [CrossRef]
  41. B. Wang, Y. Gu, F. Kong, “Rapid vibrational quenching of CO(V) by H2O and C2H2,” J. Phys. Chem. A 103, 7395–7400 (1999).
    [CrossRef]
  42. A. Chakroun, M. Margottin-Maclou, H. Gueguen, L. Doyennette, L. Henry, “Vibrational deexcitation of carbon-dioxide and nitrous-oxide excited in (0001) vibrational level and vibrational energy-transfer in CO2-CO from 150 K to 300 K,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 281, 29–32 (1975).
  43. J. Taine, F. Lepoutre, G. Louis, “Photoacoustic study of collisional deactivation of CO2 by N2, CO, and O2 between 160 K and 375 K,” Chem. Phys. Lett. 58, 611–615 (1978).
    [CrossRef]
  44. J. Taine, F. Lepoutre, “Photoacoustic study of the collisional deactivation of the first vibrational levels of CO2 by N2 and CO,” Chem. Phys. Lett. 65, 554–558 (1979).
    [CrossRef]
  45. J. Taine, F. Lepoutre, “Determination of energy transferred to rotation: translation in deactivation of CO2(0001) by N2 and O2 and of CO(1)by CO2,” Chem. Phys. Lett. 75, 448–451 (1980).
    [CrossRef]
  46. B. S. Wang, Y. S. Gu, F. N. Kong, “Multilevel vibrational-vibrational (V-V) energy transfer from CO(v) to O2 and CO2,” J. Phys. Chem. A 102, 9367–9371 (1998).
    [CrossRef]
  47. G. E. Caledonia, B. D. Green, R. E. Murphy, “Study of the vibrational level dependent quenching of CO(v = 1–16) by CO2,” J. Chem. Phys. 71, 4369–4379 (1979).
    [CrossRef]
  48. F. Lepoutre, G. Louis, J. Taine, “Photoacoustic study of intra-molecular energy transfer in CO2 deactivated by monatomic gases between 153 K and 393 K,” J. Chem. Phys. 70, 2225–2235 (1979).
    [CrossRef]
  49. J. Taine, F. Lepoutre, “Temperature-dependence of the CO2(0110) collisional deactivation rate constants between 170 K and 400 K,” Chem. Phys. Lett. 75, 452–455 (1980).
    [CrossRef]
  50. G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules VII intra- and inter-molecular energy transfer in N2 + CO2,” Chem. Phys. 67, 35–47 (1982).
    [CrossRef]
  51. C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
    [CrossRef]
  52. C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 lower laser levels as measured with a tunable diode laser,” Appl. Phys. B 31, 163–172 (1983).
    [CrossRef]
  53. G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules XI cross sections and rate constants for Ar+CO2,” Chem. Phys. 91, 327–339 (1984).
    [CrossRef]
  54. G. Jolicard, M. Y. Perrin, “Vibrational energy transfers in polyatomic molecules: a vibrational effective Hamiltonian approach for the CO2-Ar system,” Chem. Phys. 123, 249–265 (1988).
    [CrossRef]
  55. G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
    [CrossRef]
  56. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  57. L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
    [CrossRef]
  58. R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
    [CrossRef]
  59. L. Bonamy, J. Bonamy, D. Robert, A. Deroussiaux, B. Lavorel, “A direct study of the vibrational bending effect in line mixing: the hot degenerate 1110 ← 0110 transition of CO2,” J. Quant. Spectrosc. Radiat. Transfer 57, 341–348 (1997).
    [CrossRef]
  60. N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
    [CrossRef]
  61. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2400-K temperature range,” Appl. Opt. 27, 3902–3907 (1988).
    [CrossRef] [PubMed]
  62. M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, “Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
    [CrossRef]
  63. L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable-diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
    [CrossRef]
  64. T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 100 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
    [CrossRef]
  65. R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
    [CrossRef] [PubMed]
  66. E. Arié, N. Lacome, P. Arcas, A. Levy, “Oxygen- and air-broadened linewidths of CO2,” Appl. Opt. 25, 2584–2591 (1986).
    [CrossRef]
  67. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional broadening of CO2 IR lines II Calculations,” J. Chem. Phys. 88, 2999–3006 (1988)
    [CrossRef]

2001 (1)

B. J. Kirby, R. K. Hanson, “CO2 imaging using saturated planar laser-induced vibrational fluorescence,” Appl. Opt. 20, 6136–6144 (2001).
[CrossRef]

2000 (2)

B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
[CrossRef]

J. Rehm, P. H. Paul, “Reaction rate imaging,” Proc. Combust. Inst. 28, 1775–1782 (2000).
[CrossRef]

1999 (4)

B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

M. Alden, “Laser spectroscopic techniques for combustion diagnostics,” Combust. Sci. Technol. 149, 1–18 (1999).
[CrossRef]

W. P. Partridge, J. R. Reisel, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric-oxide in an inverse diffusion flame,” Combust. Flame 116, 282–290 (1999).
[CrossRef]

B. Wang, Y. Gu, F. Kong, “Rapid vibrational quenching of CO(V) by H2O and C2H2,” J. Phys. Chem. A 103, 7395–7400 (1999).
[CrossRef]

1998 (4)

B. S. Wang, Y. S. Gu, F. N. Kong, “Multilevel vibrational-vibrational (V-V) energy transfer from CO(v) to O2 and CO2,” J. Phys. Chem. A 102, 9367–9371 (1998).
[CrossRef]

G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

1997 (4)

N. Georgiev, M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
[CrossRef]

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

L. Bonamy, J. Bonamy, D. Robert, A. Deroussiaux, B. Lavorel, “A direct study of the vibrational bending effect in line mixing: the hot degenerate 1110 ← 0110 transition of CO2,” J. Quant. Spectrosc. Radiat. Transfer 57, 341–348 (1997).
[CrossRef]

1996 (1)

N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
[CrossRef]

1995 (1)

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, “Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
[CrossRef]

1994 (1)

K. Kohse-Hoinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

1993 (1)

1992 (1)

G. D. Billing, R. E. Kolesnick, “Vibrational relaxation of oxygen. State to state rate constants,” Chem. Phys. Lett. 200, 382–386 (1992).
[CrossRef]

1989 (3)

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, J. W. Hahn, “Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. 161, 232–238 (1989).
[CrossRef]

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 100 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
[CrossRef]

1988 (5)

1987 (1)

1986 (2)

E. Arié, N. Lacome, P. Arcas, A. Levy, “Oxygen- and air-broadened linewidths of CO2,” Appl. Opt. 25, 2584–2591 (1986).
[CrossRef]

L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable-diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
[CrossRef]

1984 (2)

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules XI cross sections and rate constants for Ar+CO2,” Chem. Phys. 91, 327–339 (1984).
[CrossRef]

M. Cacciatore, M. Capitelli, G. D. Billing, “Theoretical semiclassical investigation of the vibrational relaxation of CO colliding with 14N2,” Chem. Phys. 89, 17–31 (1984).
[CrossRef]

1983 (4)

J. J. Belbruno, J. Gelfand, H. Rabitz, “Collision dynamical information from pressure broadening measurements: application to carbon monoxide,” J. Chem. Phys. 78, 3990–3998 (1983).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 lower laser levels as measured with a tunable diode laser,” Appl. Phys. B 31, 163–172 (1983).
[CrossRef]

M. B. Long, D. C. Fourguette, M. C. Escoda, “Instantaneous Ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983).
[CrossRef] [PubMed]

M. Alden, P. Grafstrom, H. Lundberg, S. Svanberg, “Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode array detection,” Opt. Lett. 8, 241–243 (1983).
[CrossRef]

1982 (3)

T. Nakazawa, M. Tanaka, “Measurements of intensities and self- and foreign-gas-broadened half-widths of spectral lines in the CO fundamental band,” J. Quant. Spectrosc. Radiat. Transfer 28, 409–416 (1982).
[CrossRef]

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules VII intra- and inter-molecular energy transfer in N2 + CO2,” Chem. Phys. 67, 35–47 (1982).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
[CrossRef]

1981 (3)

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Room-temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

M. Cacciatore, G. D. Billing, “Semiclassical calculation of VV and VT rate coefficients in CO,” Chem. Phys. 58, 395–407 (1981).
[CrossRef]

1980 (3)

J. Taine, F. Lepoutre, “Temperature-dependence of the CO2(0110) collisional deactivation rate constants between 170 K and 400 K,” Chem. Phys. Lett. 75, 452–455 (1980).
[CrossRef]

G. D. Billing, “Vibration/vibration energy transfer in CO colliding with 14N2, 14N15N and 15N2,” Chem. Phys. 50, 165–173 (1980).
[CrossRef]

J. Taine, F. Lepoutre, “Determination of energy transferred to rotation: translation in deactivation of CO2(0001) by N2 and O2 and of CO(1)by CO2,” Chem. Phys. Lett. 75, 448–451 (1980).
[CrossRef]

1979 (5)

J. Taine, F. Lepoutre, “Photoacoustic study of the collisional deactivation of the first vibrational levels of CO2 by N2 and CO,” Chem. Phys. Lett. 65, 554–558 (1979).
[CrossRef]

G. E. Caledonia, B. D. Green, R. E. Murphy, “Study of the vibrational level dependent quenching of CO(v = 1–16) by CO2,” J. Chem. Phys. 71, 4369–4379 (1979).
[CrossRef]

F. Lepoutre, G. Louis, J. Taine, “Photoacoustic study of intra-molecular energy transfer in CO2 deactivated by monatomic gases between 153 K and 393 K,” J. Chem. Phys. 70, 2225–2235 (1979).
[CrossRef]

G. D. Billing, E. R. Fisher, “VV and VT-rate coefficients in N2 by a quantum-classical model,” Chem. Phys. 43, 395–401 (1979).
[CrossRef]

D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Low-temperature vibrational-relaxation of carbon-monoxide by light mass species,” Chem. Phys. 41, 449–460 (1979).
[CrossRef]

1978 (2)

T. C. Price, D. C. Allen, C. J. S. M. Simpson, “Vibrational deactivation of CO (v=1) by O2 measured between 300 and 80 K,” Chem. Phys. Lett. 53, 182–184 (1978).
[CrossRef]

J. Taine, F. Lepoutre, G. Louis, “Photoacoustic study of collisional deactivation of CO2 by N2, CO, and O2 between 160 K and 375 K,” Chem. Phys. Lett. 58, 611–615 (1978).
[CrossRef]

1977 (1)

D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Vibrational deactivation of the bending mode of CO2 measured between 1500 K and 150 K,” Chem. Phys. Lett. 45, 183–187 (1977).
[CrossRef]

1975 (6)

H. T. Powell, “Vibrational relaxation of carbon monoxide using a pulse discharge II T=100, 300, 500 K,” J. Chem. Phys. 63, 2635–2645 (1975).
[CrossRef]

R. T. V. Kung, R. E. Center, “High temperature vibrational relaxation of H2O by H2O, He, Ar, and N2,” J. Chem. Phys. 62, 2187–2194 (1975).
[CrossRef]

A. Chakroun, M. Margottin-Maclou, H. Gueguen, L. Doyennette, L. Henry, “Vibrational deexcitation of carbon-dioxide and nitrous-oxide excited in (0001) vibrational level and vibrational energy-transfer in CO2-CO from 150 K to 300 K,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 281, 29–32 (1975).

D. F. Starr, J. K. Hancock, “Vibrational energy transfer in CO2-CO mixtures from 163 to 406°K,” J. Chem. Phys. 63, 4730–4734 (1975).
[CrossRef]

Jack Finzi, C. Bradley Moore, “Relaxation of CO2(1001), CO2(0201), and N2O(1001) vibrational levels by near-resonant V → V energy transfer,” J. Chem. Phys. 63, 2285–2288 (1975).
[CrossRef]

L. Doyennette, M. Margottin-Maclou, A. Chakroun, H. Gueguen, L. Henry, “Vibrational energy transfer from (0001) level of 14N2O and 12CO2 to (m, nl,1) levels of these molecules and of their isotopic species,” J. Chem. Phys. 62, 440–447 (1975).
[CrossRef]

1974 (2)

J. C. Stephenson, E. R. Mosburg, “Vibrational energy transfer in CO from 100 to 300 °K,” J. Chem. Phys. 60, 3562–3566 (1974).
[CrossRef]

D. F. Starr, J. K. Hancock, W. H. Green, “Vibrational deactivation of carbon monoxide by hydrogen and nitrogen from 100 to 650 degrees K,” J. Chem. Phys. 61, 5421–5425 (1974).
[CrossRef]

1972 (1)

J-P. Bouanich, “Determination experimentale des largeurs et des deplacements des raies de la bande 0–2 de CO perturbe par les gas rares (He, Ne, Ar, Kr, Xe),” J. Quant. Spectrosc. Radiat. Transfer 12, 1609–1615 (1972).
[CrossRef]

1963 (1)

R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
[CrossRef]

Alden, M.

M. Alden, “Laser spectroscopic techniques for combustion diagnostics,” Combust. Sci. Technol. 149, 1–18 (1999).
[CrossRef]

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

M. Alden, P. Grafstrom, H. Lundberg, S. Svanberg, “Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode array detection,” Opt. Lett. 8, 241–243 (1983).
[CrossRef]

Aldén, M.

Allen, D. C.

D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Low-temperature vibrational-relaxation of carbon-monoxide by light mass species,” Chem. Phys. 41, 449–460 (1979).
[CrossRef]

T. C. Price, D. C. Allen, C. J. S. M. Simpson, “Vibrational deactivation of CO (v=1) by O2 measured between 300 and 80 K,” Chem. Phys. Lett. 53, 182–184 (1978).
[CrossRef]

D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Vibrational deactivation of the bending mode of CO2 measured between 1500 K and 150 K,” Chem. Phys. Lett. 45, 183–187 (1977).
[CrossRef]

Arcas, P.

Arié, E.

Belbruno, J. J.

J. J. Belbruno, J. Gelfand, H. Rabitz, “Collision dynamical information from pressure broadening measurements: application to carbon monoxide,” J. Chem. Phys. 78, 3990–3998 (1983).
[CrossRef]

Berman, R.

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

Billing, G. D.

G. D. Billing, R. E. Kolesnick, “Vibrational relaxation of oxygen. State to state rate constants,” Chem. Phys. Lett. 200, 382–386 (1992).
[CrossRef]

M. Cacciatore, M. Capitelli, G. D. Billing, “Theoretical semiclassical investigation of the vibrational relaxation of CO colliding with 14N2,” Chem. Phys. 89, 17–31 (1984).
[CrossRef]

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules XI cross sections and rate constants for Ar+CO2,” Chem. Phys. 91, 327–339 (1984).
[CrossRef]

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules VII intra- and inter-molecular energy transfer in N2 + CO2,” Chem. Phys. 67, 35–47 (1982).
[CrossRef]

M. Cacciatore, G. D. Billing, “Semiclassical calculation of VV and VT rate coefficients in CO,” Chem. Phys. 58, 395–407 (1981).
[CrossRef]

G. D. Billing, “Vibration/vibration energy transfer in CO colliding with 14N2, 14N15N and 15N2,” Chem. Phys. 50, 165–173 (1980).
[CrossRef]

G. D. Billing, E. R. Fisher, “VV and VT-rate coefficients in N2 by a quantum-classical model,” Chem. Phys. 43, 395–401 (1979).
[CrossRef]

Blanquet, Gh.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

Bonamy, J.

L. Bonamy, J. Bonamy, D. Robert, A. Deroussiaux, B. Lavorel, “A direct study of the vibrational bending effect in line mixing: the hot degenerate 1110 ← 0110 transition of CO2,” J. Quant. Spectrosc. Radiat. Transfer 57, 341–348 (1997).
[CrossRef]

Bonamy, L.

L. Bonamy, J. Bonamy, D. Robert, A. Deroussiaux, B. Lavorel, “A direct study of the vibrational bending effect in line mixing: the hot degenerate 1110 ← 0110 transition of CO2,” J. Quant. Spectrosc. Radiat. Transfer 57, 341–348 (1997).
[CrossRef]

Bouanich, J.-P.

N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
[CrossRef]

Bouanich, J-P.

J-P. Bouanich, “Determination experimentale des largeurs et des deplacements des raies de la bande 0–2 de CO perturbe par les gas rares (He, Ne, Ar, Kr, Xe),” J. Quant. Spectrosc. Radiat. Transfer 12, 1609–1615 (1972).
[CrossRef]

Boulet, C.

N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
[CrossRef]

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, “Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
[CrossRef]

Bradley Moore, C.

Jack Finzi, C. Bradley Moore, “Relaxation of CO2(1001), CO2(0201), and N2O(1001) vibrational levels by near-resonant V → V energy transfer,” J. Chem. Phys. 63, 2285–2288 (1975).
[CrossRef]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Cacciatore, M.

M. Cacciatore, M. Capitelli, G. D. Billing, “Theoretical semiclassical investigation of the vibrational relaxation of CO colliding with 14N2,” Chem. Phys. 89, 17–31 (1984).
[CrossRef]

M. Cacciatore, G. D. Billing, “Semiclassical calculation of VV and VT rate coefficients in CO,” Chem. Phys. 58, 395–407 (1981).
[CrossRef]

Caledonia, G. E.

G. E. Caledonia, B. D. Green, R. E. Murphy, “Study of the vibrational level dependent quenching of CO(v = 1–16) by CO2,” J. Chem. Phys. 71, 4369–4379 (1979).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Capitelli, M.

M. Cacciatore, M. Capitelli, G. D. Billing, “Theoretical semiclassical investigation of the vibrational relaxation of CO colliding with 14N2,” Chem. Phys. 89, 17–31 (1984).
[CrossRef]

Center, R. E.

R. T. V. Kung, R. E. Center, “High temperature vibrational relaxation of H2O by H2O, He, Ar, and N2,” J. Chem. Phys. 62, 2187–2194 (1975).
[CrossRef]

Chakroun, A.

A. Chakroun, M. Margottin-Maclou, H. Gueguen, L. Doyennette, L. Henry, “Vibrational deexcitation of carbon-dioxide and nitrous-oxide excited in (0001) vibrational level and vibrational energy-transfer in CO2-CO from 150 K to 300 K,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 281, 29–32 (1975).

L. Doyennette, M. Margottin-Maclou, A. Chakroun, H. Gueguen, L. Henry, “Vibrational energy transfer from (0001) level of 14N2O and 12CO2 to (m, nl,1) levels of these molecules and of their isotopic species,” J. Chem. Phys. 62, 440–447 (1975).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Dang, C.

C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 lower laser levels as measured with a tunable diode laser,” Appl. Phys. B 31, 163–172 (1983).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
[CrossRef]

Deroussiaux, A.

L. Bonamy, J. Bonamy, D. Robert, A. Deroussiaux, B. Lavorel, “A direct study of the vibrational bending effect in line mixing: the hot degenerate 1110 ← 0110 transition of CO2,” J. Quant. Spectrosc. Radiat. Transfer 57, 341–348 (1997).
[CrossRef]

Dohne, S. M.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Doyennette, L.

L. Doyennette, M. Margottin-Maclou, A. Chakroun, H. Gueguen, L. Henry, “Vibrational energy transfer from (0001) level of 14N2O and 12CO2 to (m, nl,1) levels of these molecules and of their isotopic species,” J. Chem. Phys. 62, 440–447 (1975).
[CrossRef]

A. Chakroun, M. Margottin-Maclou, H. Gueguen, L. Doyennette, L. Henry, “Vibrational deexcitation of carbon-dioxide and nitrous-oxide excited in (0001) vibrational level and vibrational energy-transfer in CO2-CO from 150 K to 300 K,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 281, 29–32 (1975).

Drummond, J. R.

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

Duggan, P.

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Escoda, M. C.

Filippov, N. N.

N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
[CrossRef]

Finzi, Jack

Jack Finzi, C. Bradley Moore, “Relaxation of CO2(1001), CO2(0201), and N2O(1001) vibrational levels by near-resonant V → V energy transfer,” J. Chem. Phys. 63, 2285–2288 (1975).
[CrossRef]

Fisher, E. R.

G. D. Billing, E. R. Fisher, “VV and VT-rate coefficients in N2 by a quantum-classical model,” Chem. Phys. 43, 395–401 (1979).
[CrossRef]

Flaud, J. M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Fourguette, D. C.

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Garside, B. K.

C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 lower laser levels as measured with a tunable diode laser,” Appl. Phys. B 31, 163–172 (1983).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
[CrossRef]

Gelfand, J.

J. J. Belbruno, J. Gelfand, H. Rabitz, “Collision dynamical information from pressure broadening measurements: application to carbon monoxide,” J. Chem. Phys. 78, 3990–3998 (1983).
[CrossRef]

Gentry, B. M.

L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable-diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
[CrossRef]

Georgiev, N.

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Grafstrom, P.

Green, B. D.

G. E. Caledonia, B. D. Green, R. E. Murphy, “Study of the vibrational level dependent quenching of CO(v = 1–16) by CO2,” J. Chem. Phys. 71, 4369–4379 (1979).
[CrossRef]

Green, W. H.

D. F. Starr, J. K. Hancock, W. H. Green, “Vibrational deactivation of carbon monoxide by hydrogen and nitrogen from 100 to 650 degrees K,” J. Chem. Phys. 61, 5421–5425 (1974).
[CrossRef]

Gu, Y.

B. Wang, Y. Gu, F. Kong, “Rapid vibrational quenching of CO(V) by H2O and C2H2,” J. Phys. Chem. A 103, 7395–7400 (1999).
[CrossRef]

Gu, Y. S.

B. S. Wang, Y. S. Gu, F. N. Kong, “Multilevel vibrational-vibrational (V-V) energy transfer from CO(v) to O2 and CO2,” J. Phys. Chem. A 102, 9367–9371 (1998).
[CrossRef]

Gueguen, H.

A. Chakroun, M. Margottin-Maclou, H. Gueguen, L. Doyennette, L. Henry, “Vibrational deexcitation of carbon-dioxide and nitrous-oxide excited in (0001) vibrational level and vibrational energy-transfer in CO2-CO from 150 K to 300 K,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 281, 29–32 (1975).

L. Doyennette, M. Margottin-Maclou, A. Chakroun, H. Gueguen, L. Henry, “Vibrational energy transfer from (0001) level of 14N2O and 12CO2 to (m, nl,1) levels of these molecules and of their isotopic species,” J. Chem. Phys. 62, 440–447 (1975).
[CrossRef]

Hahn, J. W.

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, J. W. Hahn, “Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. 161, 232–238 (1989).
[CrossRef]

Hancock, J. K.

D. F. Starr, J. K. Hancock, “Vibrational energy transfer in CO2-CO mixtures from 163 to 406°K,” J. Chem. Phys. 63, 4730–4734 (1975).
[CrossRef]

D. F. Starr, J. K. Hancock, W. H. Green, “Vibrational deactivation of carbon monoxide by hydrogen and nitrogen from 100 to 650 degrees K,” J. Chem. Phys. 61, 5421–5425 (1974).
[CrossRef]

Hanson, R. K.

B. J. Kirby, R. K. Hanson, “CO2 imaging using saturated planar laser-induced vibrational fluorescence,” Appl. Opt. 20, 6136–6144 (2001).
[CrossRef]

B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
[CrossRef]

B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic crossflow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

B. Hiller, R. K. Hanson, “Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence,” Appl. Opt. 27, 33–48 (1988).
[CrossRef] [PubMed]

J. M. Seitzman, J. Haumann, R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
[CrossRef] [PubMed]

P. L. Varghese, R. K. Hanson, “Room-temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Planar fluorescence imaging in gases,” in Experimental Methods for Flows with Combustion, A. Taylor, ed. (Academic, London, 1993).

Hartmann, J. M.

Hartmann, J.-M.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
[CrossRef]

Haumann, J.

Henry, A.

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, “Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
[CrossRef]

Henry, L.

A. Chakroun, M. Margottin-Maclou, H. Gueguen, L. Doyennette, L. Henry, “Vibrational deexcitation of carbon-dioxide and nitrous-oxide excited in (0001) vibrational level and vibrational energy-transfer in CO2-CO from 150 K to 300 K,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 281, 29–32 (1975).

L. Doyennette, M. Margottin-Maclou, A. Chakroun, H. Gueguen, L. Henry, “Vibrational energy transfer from (0001) level of 14N2O and 12CO2 to (m, nl,1) levels of these molecules and of their isotopic species,” J. Chem. Phys. 62, 440–447 (1975).
[CrossRef]

Hiller, B.

Huet, T.

T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 100 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
[CrossRef]

Hurst, W. S.

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, J. W. Hahn, “Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. 161, 232–238 (1989).
[CrossRef]

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Johansson, B.

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

Jolicard, G.

G. Jolicard, M. Y. Perrin, “Vibrational energy transfers in polyatomic molecules: a vibrational effective Hamiltonian approach for the CO2-Ar system,” Chem. Phys. 123, 249–265 (1988).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Juhlin, G.

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

Kee, R. J.

R. J. Kee, F. M. Rupley, J. A. Miller, “Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Tech. Rep. SAND89-8009B, (Sandia National Laboratories, Livermore, Calif., 1992).

Khalil, B.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

Kirby, B. J.

B. J. Kirby, R. K. Hanson, “CO2 imaging using saturated planar laser-induced vibrational fluorescence,” Appl. Opt. 20, 6136–6144 (2001).
[CrossRef]

B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
[CrossRef]

B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

Kohse-Hoinghaus, K.

K. Kohse-Hoinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Kolesnick, R. E.

G. D. Billing, R. E. Kolesnick, “Vibrational relaxation of oxygen. State to state rate constants,” Chem. Phys. Lett. 200, 382–386 (1992).
[CrossRef]

Kong, F.

B. Wang, Y. Gu, F. Kong, “Rapid vibrational quenching of CO(V) by H2O and C2H2,” J. Phys. Chem. A 103, 7395–7400 (1999).
[CrossRef]

Kong, F. N.

B. S. Wang, Y. S. Gu, F. N. Kong, “Multilevel vibrational-vibrational (V-V) energy transfer from CO(v) to O2 and CO2,” J. Phys. Chem. A 102, 9367–9371 (1998).
[CrossRef]

Kung, R. T. V.

R. T. V. Kung, R. E. Center, “High temperature vibrational relaxation of H2O by H2O, He, Ar, and N2,” J. Chem. Phys. 62, 2187–2194 (1975).
[CrossRef]

Lacome, N.

T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 100 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
[CrossRef]

E. Arié, N. Lacome, P. Arcas, A. Levy, “Oxygen- and air-broadened linewidths of CO2,” Appl. Opt. 25, 2584–2591 (1986).
[CrossRef]

Laurendeau, N. M.

W. P. Partridge, J. R. Reisel, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric-oxide in an inverse diffusion flame,” Combust. Flame 116, 282–290 (1999).
[CrossRef]

Lavorel, B.

L. Bonamy, J. Bonamy, D. Robert, A. Deroussiaux, B. Lavorel, “A direct study of the vibrational bending effect in line mixing: the hot degenerate 1110 ← 0110 transition of CO2,” J. Quant. Spectrosc. Radiat. Transfer 57, 341–348 (1997).
[CrossRef]

Le Doucen, R.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
[CrossRef]

Lepoutre, F.

J. Taine, F. Lepoutre, “Temperature-dependence of the CO2(0110) collisional deactivation rate constants between 170 K and 400 K,” Chem. Phys. Lett. 75, 452–455 (1980).
[CrossRef]

J. Taine, F. Lepoutre, “Determination of energy transferred to rotation: translation in deactivation of CO2(0001) by N2 and O2 and of CO(1)by CO2,” Chem. Phys. Lett. 75, 448–451 (1980).
[CrossRef]

J. Taine, F. Lepoutre, “Photoacoustic study of the collisional deactivation of the first vibrational levels of CO2 by N2 and CO,” Chem. Phys. Lett. 65, 554–558 (1979).
[CrossRef]

F. Lepoutre, G. Louis, J. Taine, “Photoacoustic study of intra-molecular energy transfer in CO2 deactivated by monatomic gases between 153 K and 393 K,” J. Chem. Phys. 70, 2225–2235 (1979).
[CrossRef]

J. Taine, F. Lepoutre, G. Louis, “Photoacoustic study of collisional deactivation of CO2 by N2, CO, and O2 between 160 K and 375 K,” Chem. Phys. Lett. 58, 611–615 (1978).
[CrossRef]

Levy, A.

Lévy, A.

T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 100 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
[CrossRef]

Long, M. B.

Looney, J. P.

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, J. W. Hahn, “Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. 161, 232–238 (1989).
[CrossRef]

Louis, G.

F. Lepoutre, G. Louis, J. Taine, “Photoacoustic study of intra-molecular energy transfer in CO2 deactivated by monatomic gases between 153 K and 393 K,” J. Chem. Phys. 70, 2225–2235 (1979).
[CrossRef]

J. Taine, F. Lepoutre, G. Louis, “Photoacoustic study of collisional deactivation of CO2 by N2, CO, and O2 between 160 K and 375 K,” Chem. Phys. Lett. 58, 611–615 (1978).
[CrossRef]

Lundberg, H.

Mandin, J. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Margottin-Maclou, M.

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, “Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
[CrossRef]

A. Chakroun, M. Margottin-Maclou, H. Gueguen, L. Doyennette, L. Henry, “Vibrational deexcitation of carbon-dioxide and nitrous-oxide excited in (0001) vibrational level and vibrational energy-transfer in CO2-CO from 150 K to 300 K,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 281, 29–32 (1975).

L. Doyennette, M. Margottin-Maclou, A. Chakroun, H. Gueguen, L. Henry, “Vibrational energy transfer from (0001) level of 14N2O and 12CO2 to (m, nl,1) levels of these molecules and of their isotopic species,” J. Chem. Phys. 62, 440–447 (1975).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

May, A. D.

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McMillin, B. K.

Miller, J. A.

R. J. Kee, F. M. Rupley, J. A. Miller, “Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Tech. Rep. SAND89-8009B, (Sandia National Laboratories, Livermore, Calif., 1992).

Millikan, R. C.

R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
[CrossRef]

Millot, G.

G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
[CrossRef]

Mosburg, E. R.

J. C. Stephenson, E. R. Mosburg, “Vibrational energy transfer in CO from 100 to 300 °K,” J. Chem. Phys. 60, 3562–3566 (1974).
[CrossRef]

Murphy, R. E.

G. E. Caledonia, B. D. Green, R. E. Murphy, “Study of the vibrational level dependent quenching of CO(v = 1–16) by CO2,” J. Chem. Phys. 71, 4369–4379 (1979).
[CrossRef]

Nakazawa, T.

T. Nakazawa, M. Tanaka, “Measurements of intensities and self- and foreign-gas-broadened half-widths of spectral lines in the CO fundamental band,” J. Quant. Spectrosc. Radiat. Transfer 28, 409–416 (1982).
[CrossRef]

Neij, H.

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ozanne, L.

N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
[CrossRef]

Palmer, J. L.

Palmer, R. E.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Partridge, W. P.

W. P. Partridge, J. R. Reisel, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric-oxide in an inverse diffusion flame,” Combust. Flame 116, 282–290 (1999).
[CrossRef]

Paul, P. H.

J. Rehm, P. H. Paul, “Reaction rate imaging,” Proc. Combust. Inst. 28, 1775–1782 (2000).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Perrin, M. Y.

G. Jolicard, M. Y. Perrin, “Vibrational energy transfers in polyatomic molecules: a vibrational effective Hamiltonian approach for the CO2-Ar system,” Chem. Phys. 123, 249–265 (1988).
[CrossRef]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2400-K temperature range,” Appl. Opt. 27, 3902–3907 (1988).
[CrossRef] [PubMed]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional broadening of CO2 IR lines II Calculations,” J. Chem. Phys. 88, 2999–3006 (1988)
[CrossRef]

J. M. Hartmann, L. Rosenmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of CO line broadening by H2O, N2, O2, and CO2 in the 200–3000-K temperature range,” Appl. Opt. 27, 3063–3065 (1988).
[CrossRef] [PubMed]

Powell, H. T.

H. T. Powell, “Vibrational relaxation of carbon monoxide using a pulse discharge II T=100, 300, 500 K,” J. Chem. Phys. 63, 2635–2645 (1975).
[CrossRef]

Price, T. C.

T. C. Price, D. C. Allen, C. J. S. M. Simpson, “Vibrational deactivation of CO (v=1) by O2 measured between 300 and 80 K,” Chem. Phys. Lett. 53, 182–184 (1978).
[CrossRef]

Price, T. J.

D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Low-temperature vibrational-relaxation of carbon-monoxide by light mass species,” Chem. Phys. 41, 449–460 (1979).
[CrossRef]

D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Vibrational deactivation of the bending mode of CO2 measured between 1500 K and 150 K,” Chem. Phys. Lett. 45, 183–187 (1977).
[CrossRef]

Rabitz, H.

J. J. Belbruno, J. Gelfand, H. Rabitz, “Collision dynamical information from pressure broadening measurements: application to carbon monoxide,” J. Chem. Phys. 78, 3990–3998 (1983).
[CrossRef]

Rachet, F.

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, “Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
[CrossRef]

Rahn, L. A.

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, J. W. Hahn, “Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. 161, 232–238 (1989).
[CrossRef]

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Rehm, J.

J. Rehm, P. H. Paul, “Reaction rate imaging,” Proc. Combust. Inst. 28, 1775–1782 (2000).
[CrossRef]

Reid, J.

C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 lower laser levels as measured with a tunable diode laser,” Appl. Phys. B 31, 163–172 (1983).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
[CrossRef]

Reisel, J. R.

W. P. Partridge, J. R. Reisel, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric-oxide in an inverse diffusion flame,” Combust. Flame 116, 282–290 (1999).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Robert, D.

L. Bonamy, J. Bonamy, D. Robert, A. Deroussiaux, B. Lavorel, “A direct study of the vibrational bending effect in line mixing: the hot degenerate 1110 ← 0110 transition of CO2,” J. Quant. Spectrosc. Radiat. Transfer 57, 341–348 (1997).
[CrossRef]

Roche, C.

G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
[CrossRef]

Rodrigues, R.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

Rosasco, G. J.

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, J. W. Hahn, “Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. 161, 232–238 (1989).
[CrossRef]

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Rosenmann, L.

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

Rupley, F. M.

R. J. Kee, F. M. Rupley, J. A. Miller, “Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Tech. Rep. SAND89-8009B, (Sandia National Laboratories, Livermore, Calif., 1992).

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Seitzman, J. M.

J. M. Seitzman, J. Haumann, R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
[CrossRef] [PubMed]

J. M. Seitzman, R. K. Hanson, “Planar fluorescence imaging in gases,” in Experimental Methods for Flows with Combustion, A. Taylor, ed. (Academic, London, 1993).

Simpson, C. J. S. M.

D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Low-temperature vibrational-relaxation of carbon-monoxide by light mass species,” Chem. Phys. 41, 449–460 (1979).
[CrossRef]

T. C. Price, D. C. Allen, C. J. S. M. Simpson, “Vibrational deactivation of CO (v=1) by O2 measured between 300 and 80 K,” Chem. Phys. Lett. 53, 182–184 (1978).
[CrossRef]

D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Vibrational deactivation of the bending mode of CO2 measured between 1500 K and 150 K,” Chem. Phys. Lett. 45, 183–187 (1977).
[CrossRef]

Sinclair, P. M.

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

Starr, D. F.

D. F. Starr, J. K. Hancock, “Vibrational energy transfer in CO2-CO mixtures from 163 to 406°K,” J. Chem. Phys. 63, 4730–4734 (1975).
[CrossRef]

D. F. Starr, J. K. Hancock, W. H. Green, “Vibrational deactivation of carbon monoxide by hydrogen and nitrogen from 100 to 650 degrees K,” J. Chem. Phys. 61, 5421–5425 (1974).
[CrossRef]

Stephenson, J. C.

J. C. Stephenson, E. R. Mosburg, “Vibrational energy transfer in CO from 100 to 300 °K,” J. Chem. Phys. 60, 3562–3566 (1974).
[CrossRef]

Strow, L. L.

L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable-diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
[CrossRef]

Svanberg, S.

Taine, J.

J. M. Hartmann, L. Rosenmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of CO line broadening by H2O, N2, O2, and CO2 in the 200–3000-K temperature range,” Appl. Opt. 27, 3063–3065 (1988).
[CrossRef] [PubMed]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2400-K temperature range,” Appl. Opt. 27, 3902–3907 (1988).
[CrossRef] [PubMed]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional broadening of CO2 IR lines II Calculations,” J. Chem. Phys. 88, 2999–3006 (1988)
[CrossRef]

J. Taine, F. Lepoutre, “Determination of energy transferred to rotation: translation in deactivation of CO2(0001) by N2 and O2 and of CO(1)by CO2,” Chem. Phys. Lett. 75, 448–451 (1980).
[CrossRef]

J. Taine, F. Lepoutre, “Temperature-dependence of the CO2(0110) collisional deactivation rate constants between 170 K and 400 K,” Chem. Phys. Lett. 75, 452–455 (1980).
[CrossRef]

J. Taine, F. Lepoutre, “Photoacoustic study of the collisional deactivation of the first vibrational levels of CO2 by N2 and CO,” Chem. Phys. Lett. 65, 554–558 (1979).
[CrossRef]

F. Lepoutre, G. Louis, J. Taine, “Photoacoustic study of intra-molecular energy transfer in CO2 deactivated by monatomic gases between 153 K and 393 K,” J. Chem. Phys. 70, 2225–2235 (1979).
[CrossRef]

J. Taine, F. Lepoutre, G. Louis, “Photoacoustic study of collisional deactivation of CO2 by N2, CO, and O2 between 160 K and 375 K,” Chem. Phys. Lett. 58, 611–615 (1978).
[CrossRef]

Tanaka, M.

T. Nakazawa, M. Tanaka, “Measurements of intensities and self- and foreign-gas-broadened half-widths of spectral lines in the CO fundamental band,” J. Quant. Spectrosc. Radiat. Transfer 28, 409–416 (1982).
[CrossRef]

Thibault, F.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
[CrossRef]

Tonkov, M. V.

N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
[CrossRef]

Valentin, A.

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, “Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Varghese, P. L.

P. L. Varghese, R. K. Hanson, “Room-temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

Versluis, M.

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

Walrand, J.

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

Wang, B.

B. Wang, Y. Gu, F. Kong, “Rapid vibrational quenching of CO(V) by H2O and C2H2,” J. Phys. Chem. A 103, 7395–7400 (1999).
[CrossRef]

Wang, B. S.

B. S. Wang, Y. S. Gu, F. N. Kong, “Multilevel vibrational-vibrational (V-V) energy transfer from CO(v) to O2 and CO2,” J. Phys. Chem. A 102, 9367–9371 (1998).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

White, D. R.

R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
[CrossRef]

Yardley, J. T.

J. T. Yardley, “Introduction to Molecular Energy Transfer (Academic, New York, 1980).

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Young, L. D. G.

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (3)

B. J. Kirby, R. K. Hanson, “Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions,” Appl. Phys. B 69, 505–507 (1999).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 lower laser levels as measured with a tunable diode laser,” Appl. Phys. B 31, 163–172 (1983).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. (8)

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules VII intra- and inter-molecular energy transfer in N2 + CO2,” Chem. Phys. 67, 35–47 (1982).
[CrossRef]

G. D. Billing, “Semiclassical calculation of energy transfer in polyatomic molecules XI cross sections and rate constants for Ar+CO2,” Chem. Phys. 91, 327–339 (1984).
[CrossRef]

G. Jolicard, M. Y. Perrin, “Vibrational energy transfers in polyatomic molecules: a vibrational effective Hamiltonian approach for the CO2-Ar system,” Chem. Phys. 123, 249–265 (1988).
[CrossRef]

D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Low-temperature vibrational-relaxation of carbon-monoxide by light mass species,” Chem. Phys. 41, 449–460 (1979).
[CrossRef]

M. Cacciatore, G. D. Billing, “Semiclassical calculation of VV and VT rate coefficients in CO,” Chem. Phys. 58, 395–407 (1981).
[CrossRef]

G. D. Billing, E. R. Fisher, “VV and VT-rate coefficients in N2 by a quantum-classical model,” Chem. Phys. 43, 395–401 (1979).
[CrossRef]

G. D. Billing, “Vibration/vibration energy transfer in CO colliding with 14N2, 14N15N and 15N2,” Chem. Phys. 50, 165–173 (1980).
[CrossRef]

M. Cacciatore, M. Capitelli, G. D. Billing, “Theoretical semiclassical investigation of the vibrational relaxation of CO colliding with 14N2,” Chem. Phys. 89, 17–31 (1984).
[CrossRef]

Chem. Phys. Lett. (8)

G. D. Billing, R. E. Kolesnick, “Vibrational relaxation of oxygen. State to state rate constants,” Chem. Phys. Lett. 200, 382–386 (1992).
[CrossRef]

T. C. Price, D. C. Allen, C. J. S. M. Simpson, “Vibrational deactivation of CO (v=1) by O2 measured between 300 and 80 K,” Chem. Phys. Lett. 53, 182–184 (1978).
[CrossRef]

J. Taine, F. Lepoutre, “Temperature-dependence of the CO2(0110) collisional deactivation rate constants between 170 K and 400 K,” Chem. Phys. Lett. 75, 452–455 (1980).
[CrossRef]

J. Taine, F. Lepoutre, G. Louis, “Photoacoustic study of collisional deactivation of CO2 by N2, CO, and O2 between 160 K and 375 K,” Chem. Phys. Lett. 58, 611–615 (1978).
[CrossRef]

J. Taine, F. Lepoutre, “Photoacoustic study of the collisional deactivation of the first vibrational levels of CO2 by N2 and CO,” Chem. Phys. Lett. 65, 554–558 (1979).
[CrossRef]

J. Taine, F. Lepoutre, “Determination of energy transferred to rotation: translation in deactivation of CO2(0001) by N2 and O2 and of CO(1)by CO2,” Chem. Phys. Lett. 75, 448–451 (1980).
[CrossRef]

D. C. Allen, T. J. Price, C. J. S. M. Simpson, “Vibrational deactivation of the bending mode of CO2 measured between 1500 K and 150 K,” Chem. Phys. Lett. 45, 183–187 (1977).
[CrossRef]

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, J. W. Hahn, “Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. 161, 232–238 (1989).
[CrossRef]

Combust. Flame (1)

W. P. Partridge, J. R. Reisel, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric-oxide in an inverse diffusion flame,” Combust. Flame 116, 282–290 (1999).
[CrossRef]

Combust. Sci. Technol. (2)

G. Juhlin, H. Neij, M. Versluis, B. Johansson, M. Alden, “Planar laser-induced fluorescence of H2O to study the influence of residual gases on cycle-to-cycle variations in SI engines,” Combust. Sci. Technol. 132, 75–97 (1998).
[CrossRef]

M. Alden, “Laser spectroscopic techniques for combustion diagnostics,” Combust. Sci. Technol. 149, 1–18 (1999).
[CrossRef]

Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B (1)

A. Chakroun, M. Margottin-Maclou, H. Gueguen, L. Doyennette, L. Henry, “Vibrational deexcitation of carbon-dioxide and nitrous-oxide excited in (0001) vibrational level and vibrational energy-transfer in CO2-CO from 150 K to 300 K,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 281, 29–32 (1975).

J. Chem. Phys. (14)

H. T. Powell, “Vibrational relaxation of carbon monoxide using a pulse discharge II T=100, 300, 500 K,” J. Chem. Phys. 63, 2635–2645 (1975).
[CrossRef]

G. E. Caledonia, B. D. Green, R. E. Murphy, “Study of the vibrational level dependent quenching of CO(v = 1–16) by CO2,” J. Chem. Phys. 71, 4369–4379 (1979).
[CrossRef]

F. Lepoutre, G. Louis, J. Taine, “Photoacoustic study of intra-molecular energy transfer in CO2 deactivated by monatomic gases between 153 K and 393 K,” J. Chem. Phys. 70, 2225–2235 (1979).
[CrossRef]

R. C. Millikan, D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39, 3209–3213 (1963).
[CrossRef]

D. F. Starr, J. K. Hancock, W. H. Green, “Vibrational deactivation of carbon monoxide by hydrogen and nitrogen from 100 to 650 degrees K,” J. Chem. Phys. 61, 5421–5425 (1974).
[CrossRef]

J. J. Belbruno, J. Gelfand, H. Rabitz, “Collision dynamical information from pressure broadening measurements: application to carbon monoxide,” J. Chem. Phys. 78, 3990–3998 (1983).
[CrossRef]

R. T. V. Kung, R. E. Center, “High temperature vibrational relaxation of H2O by H2O, He, Ar, and N2,” J. Chem. Phys. 62, 2187–2194 (1975).
[CrossRef]

J. C. Stephenson, E. R. Mosburg, “Vibrational energy transfer in CO from 100 to 300 °K,” J. Chem. Phys. 60, 3562–3566 (1974).
[CrossRef]

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

L. L. Strow, B. M. Gentry, “Rotational collisional narrowing in an infrared CO2Q-branch studied with a tunable-diode laser,” J. Chem. Phys. 84, 1149–1156 (1986).
[CrossRef]

D. F. Starr, J. K. Hancock, “Vibrational energy transfer in CO2-CO mixtures from 163 to 406°K,” J. Chem. Phys. 63, 4730–4734 (1975).
[CrossRef]

Jack Finzi, C. Bradley Moore, “Relaxation of CO2(1001), CO2(0201), and N2O(1001) vibrational levels by near-resonant V → V energy transfer,” J. Chem. Phys. 63, 2285–2288 (1975).
[CrossRef]

L. Doyennette, M. Margottin-Maclou, A. Chakroun, H. Gueguen, L. Henry, “Vibrational energy transfer from (0001) level of 14N2O and 12CO2 to (m, nl,1) levels of these molecules and of their isotopic species,” J. Chem. Phys. 62, 440–447 (1975).
[CrossRef]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional broadening of CO2 IR lines II Calculations,” J. Chem. Phys. 88, 2999–3006 (1988)
[CrossRef]

J. Mol. Spectrosc. (5)

M. Margottin-Maclou, F. Rachet, C. Boulet, A. Henry, A. Valentin, “Q-branch line mixing effects in the (2000)I ← 0110 and (1220)I ← 0110 bands of carbon dioxide,” J. Mol. Spectrosc. 172, 1–15 (1995).
[CrossRef]

T. Huet, N. Lacome, A. Lévy, “Line mixing effects in the Q branch of the 100 ← 0110 transition of CO2,” J. Mol. Spectrosc. 138, 141–161 (1989).
[CrossRef]

R. Berman, P. Duggan, P. M. Sinclair, A. D. May, J. R. Drummond, “Direct measurements of line-mixing coefficients in the ν1+ν2Q branch of CO2,” J. Mol. Spectrosc. 182, 350–363 (1997).
[CrossRef] [PubMed]

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R. Le Doucen, F. Thibault, J.-M. Hartmann, “Line-mixing effects in Q branches of CO2 I: Influence of parity in Δ↔ Π bands,” J. Mol. Spectrosc. 186, 256–268 (1997).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Room-temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

J. Phys. Chem. A (2)

B. Wang, Y. Gu, F. Kong, “Rapid vibrational quenching of CO(V) by H2O and C2H2,” J. Phys. Chem. A 103, 7395–7400 (1999).
[CrossRef]

B. S. Wang, Y. S. Gu, F. N. Kong, “Multilevel vibrational-vibrational (V-V) energy transfer from CO(v) to O2 and CO2,” J. Phys. Chem. A 102, 9367–9371 (1998).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (6)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

J-P. Bouanich, “Determination experimentale des largeurs et des deplacements des raies de la bande 0–2 de CO perturbe par les gas rares (He, Ne, Ar, Kr, Xe),” J. Quant. Spectrosc. Radiat. Transfer 12, 1609–1615 (1972).
[CrossRef]

L. Bonamy, J. Bonamy, D. Robert, A. Deroussiaux, B. Lavorel, “A direct study of the vibrational bending effect in line mixing: the hot degenerate 1110 ← 0110 transition of CO2,” J. Quant. Spectrosc. Radiat. Transfer 57, 341–348 (1997).
[CrossRef]

N. N. Filippov, J.-P. Bouanich, J.-M. Hartmann, L. Ozanne, C. Boulet, M. V. Tonkov, F. Thibault, R. Le Doucen, “Line-mixing effects in the 3ν3 band of CO2 perturbed by Ar,” J. Quant. Spectrosc. Radiat. Transfer 55, 307–320 (1996).
[CrossRef]

T. Nakazawa, M. Tanaka, “Measurements of intensities and self- and foreign-gas-broadened half-widths of spectral lines in the CO fundamental band,” J. Quant. Spectrosc. Radiat. Transfer 28, 409–416 (1982).
[CrossRef]

J. Raman Spectrosc. (1)

G. Millot, C. Roche, “State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved Raman-infrared double-resonance experiments,” J. Raman Spectrosc. 29, 313–320 (1998).
[CrossRef]

Opt. Lett. (2)

Proc. Combust. Inst. (2)

B. J. Kirby, R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28, 253–259 (2000).
[CrossRef]

J. Rehm, P. H. Paul, “Reaction rate imaging,” Proc. Combust. Inst. 28, 1775–1782 (2000).
[CrossRef]

Prog. Energy Combust. Sci. (1)

K. Kohse-Hoinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Other (3)

J. M. Seitzman, R. K. Hanson, “Planar fluorescence imaging in gases,” in Experimental Methods for Flows with Combustion, A. Taylor, ed. (Academic, London, 1993).

R. J. Kee, F. M. Rupley, J. A. Miller, “Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Tech. Rep. SAND89-8009B, (Sandia National Laboratories, Livermore, Calif., 1992).

J. T. Yardley, “Introduction to Molecular Energy Transfer (Academic, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Sample IR PLIF visualization of a room-temperature, 6-mm-diameter forced CO2 jet mixing with ambient air. A single 8-mJ pulse at 2.0 µm pumps the (2001)II ← (0000) transition in CO2, and an InSb camera collects fluorescence at 4.3 µm.

Fig. 2
Fig. 2

Typical IR PLIF experimental setup. PBS, pellicle beamsplitter.

Fig. 3
Fig. 3

Comparison of computational results and experimental measurements of LIF as a function of characteristic fluence, defined as pulse energy divided by square of beam waist FWHM. Measured LIF signal is relative. 293 K [R(8) excitation] and 705 K [R(12) excitation] experimental values are all scaled by a single constant factor, which is chosen to best match the computation.

Fig. 4
Fig. 4

Acceptable fluence shown as a function of temperature. Assumed experimental parameters are 1 atm, trace CO in air, the excitation of the strongest R line, a factor of two spatial variation of irradiance across the image owing to laser sheet profile nonuniformity and beam focusing, and 500-µm sheet thickness.

Fig. 5
Fig. 5

CO excitation and collection scheme.

Fig. 6
Fig. 6

VET rates for a model four-level system. Radiative transfer is a minor energy-transfer mechanism and is omitted from this figure.

Fig. 7
Fig. 7

Characteristic times for VET as a function of temperature and collision partner at 1 atm. (a) Rates for CO in a mixture of 5% CO, 10% CO2, and 10% H2O in N2. O2 and inert gases are inefficient VET partners and are not considered. (b) Rates for CO2 in the same mixture. Temperature dependences are stronger for CO2 than CO owing to the nonresonant nature of the intermodal V-V transfer.

Fig. 8
Fig. 8

Effects of (a) exposure time, (b) strength of excitation, (c) CO mole fraction, and (d) H2O mole fraction on ϕ for CO. Nominal parameters are 1-µs exposure; 10% excitation; and mixture constituents 5% CO, 15% H2O, 15% CO2 in N2. In each graph, one parameter is varied from the nominal value, while other values are held constant.

Fig. 9
Fig. 9

Product of absorption cross section and fluorescence quantum yield for CO [normalized to R(7) line at 300 K] as a function of pumped line and temperature at 1 atm. The gas mixture is the same as was used for Fig. 8. Spectrally narrow laser excitation at the line center is assumed. From this graph, lines may be chosen that have roughly constant σϕ (±15%) in various regions ranging from room temperature to 2200 K.

Fig. 10
Fig. 10

Calculated fluorescence signal as compared with noise levels for the IR PLIF of CO. n CO = 1.7 × 1017 cm-3, corresponding to 5% CO at 2200 K and 1 atm. Bath gas is 15% H2O and 15% CO2, with a balance of N2. Other parameters are 1-µs exposure, 10-mJ excitation pulse, and 8 cm × 8 cm image.

Fig. 11
Fig. 11

Predicted CO2 fluorescence quantum yield ϕ for linear excitation and 1-µs exposure. Nominal gas mixture is 15% H2O and 15% CO2, with a balance of N2, at 1000 K. Curves show effect as mole fraction of CO2 or H2O is changed.

Fig. 12
Fig. 12

CO2 absorption cross section [normalized to R(30) line at 300 K] as a function of pumped line and temperature (for R transitions). Legend indicates the lower vibrational level (0000 or 0110) and rotational state. Spectrally narrow laser excitation is assumed.

Tables (2)

Tables Icon

Table 1 Sample References Providing VET Data for Use in Calculating Fluorescence Quantum Yield

Tables Icon

Table 2 Acceptable Fluence (<10% Error in LIF Signal) Shown for Several CO2 Excitation Schemes at 1500 Ka

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Sf,lin=Np,incnabsσϕηc
COi+MkjiCOj+M,
kji=A 296Tn1+Ei/kBTδ1+Ei/kBT2 exp-βΔE/kBT.
πcΔvcij=1ji kji.
L2+ML1+M+ΔE1,
B3+MB4+M+ΔE1+ΔE2,
L1+B3L2+B4+ΔE2.
dN1/dt=N2kVT-N1kVT exp-ΔE1/kBT-N1N3N kVV+N2N4N kVV exp-ΔE2/kBT,dN2/dt=N2kVT-N1kVT exp-ΔE1/kBT+N1N3N kVV-N2N4N kVV exp-ΔE2/kBT, dN3/dt=N4kVT-N3kVT exp-ΔE1+ΔE2/kBT-N1N3N kVV+N2N4N kVV exp-ΔE2/kBT, dN4/dt=N4kVT-N3kVT exp-ΔE1+ΔE2/kBT+N1N3N kVV-N2N4N kVV exp-ΔE2/kBT,
ϕ=j0τΔNjtNp,abs Ajdt,
ϕ=0τ A N2tNp,absdt.
ϕ=0 A exp-kVTtdt=A/kVT.
ϕ=0τ A exp-kVTtdt=0τ Adt=Aτ.
N1N3N=N2N4Nexp-ΔE2/kT.
N2χL=N3χBexpΔE2/kBT,
ϕ=Aτ χLχL+χB exp-ΔE2/kBT.
ϕ=Aτ χLχL+χB.

Metrics