Abstract

A new organic dye, trans-4, 4′-bis(pyrrolidingl) stilbene (BPAS), with large two-photon absorption (TPA) and three-photon absorption (3PA) has been synthesized. The molecular TPA cross section σ2′ at 550–670 nm and the 3PA cross section σ3′ at 720–1000 nm have been measured. The biggest σ2′ and σ3′ was 5.77 × 10-47 cm4s/photon and 27 × 10-75 cm6 s2 at 600 and 980 nm, respectively. In the experiment process we found that the strongest TPA wavelength is not at two times of the strongest linear absorption wavelength, but there is some blue shift. The 3PA-induced optical power-limiting properties have also been illustrated at 980 nm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, L. Yuan, Y. Cui, M. Li, P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81, 2529–2537 (1997).
    [CrossRef]
  2. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organic, fullerence, semiconductor, and other materials,” Prog. Quantum Electron. 17, 299–238 (1993).
    [CrossRef]
  3. C. W. Spangler, “Recent development in the design of organic matericals for optical power limiting,” J. Mater. Chem. 9, 2013–2020 (1999).
    [CrossRef]
  4. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rockel, S. R. Marder, J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
    [CrossRef]
  5. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  6. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  7. S. Maruo, O. Nakamura, S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [CrossRef] [PubMed]
  8. A. M. R. Fisher, A. L. Murphree, C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Laser Surg. Med. 17, 2–31 (1995).
    [CrossRef]
  9. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
    [CrossRef] [PubMed]

1999

C. W. Spangler, “Recent development in the design of organic matericals for optical power limiting,” J. Mater. Chem. 9, 2013–2020 (1999).
[CrossRef]

1997

1995

1993

W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organic, fullerence, semiconductor, and other materials,” Prog. Quantum Electron. 17, 299–238 (1993).
[CrossRef]

1990

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1989

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Bhatt, J. C.

Boggess, T. F.

W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organic, fullerence, semiconductor, and other materials,” Prog. Quantum Electron. 17, 299–238 (1993).
[CrossRef]

Cui, Y.

G. S. He, L. Yuan, Y. Cui, M. Li, P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81, 2529–2537 (1997).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Dillard, A. G.

Ehrlich, J. E.

Fisher, A. M. R.

A. M. R. Fisher, A. L. Murphree, C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Laser Surg. Med. 17, 2–31 (1995).
[CrossRef]

Gomer, C. J.

A. M. R. Fisher, A. L. Murphree, C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Laser Surg. Med. 17, 2–31 (1995).
[CrossRef]

He, G. S.

G. S. He, L. Yuan, Y. Cui, M. Li, P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81, 2529–2537 (1997).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

Hu, Z.-Y.

Kawata, S.

Lee, I.-Y. S.

Li, M.

G. S. He, L. Yuan, Y. Cui, M. Li, P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81, 2529–2537 (1997).
[CrossRef]

Marder, S. R.

Maruo, S.

Murphree, A. L.

A. M. R. Fisher, A. L. Murphree, C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Laser Surg. Med. 17, 2–31 (1995).
[CrossRef]

Nakamura, O.

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Perry, J. W.

Prasad, P. N.

G. S. He, L. Yuan, Y. Cui, M. Li, P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81, 2529–2537 (1997).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

Reinhardt, B. A.

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Rockel, H.

Spangler, C. W.

C. W. Spangler, “Recent development in the design of organic matericals for optical power limiting,” J. Mater. Chem. 9, 2013–2020 (1999).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Tutt, W.

W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organic, fullerence, semiconductor, and other materials,” Prog. Quantum Electron. 17, 299–238 (1993).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Wu, X. L.

Xu, G. C.

Yuan, L.

G. S. He, L. Yuan, Y. Cui, M. Li, P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81, 2529–2537 (1997).
[CrossRef]

J. Appl. Phys.

G. S. He, L. Yuan, Y. Cui, M. Li, P. N. Prasad, “Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material,” J. Appl. Phys. 81, 2529–2537 (1997).
[CrossRef]

J. Mater. Chem.

C. W. Spangler, “Recent development in the design of organic matericals for optical power limiting,” J. Mater. Chem. 9, 2013–2020 (1999).
[CrossRef]

Laser Surg. Med.

A. M. R. Fisher, A. L. Murphree, C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Laser Surg. Med. 17, 2–31 (1995).
[CrossRef]

Opt. Lett.

Prog. Quantum Electron.

W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organic, fullerence, semiconductor, and other materials,” Prog. Quantum Electron. 17, 299–238 (1993).
[CrossRef]

Science

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup used for the measurement of nonlinear transmittance of BPAS solution.

Fig. 2
Fig. 2

Linear absorption spectrum of BPAS solution at 1 × 10-5 mol/l concentration. In the upper right corner is the molecular chemical structure.

Fig. 3
Fig. 3

Single-photon induced fluorescence spectrum of BPAS solution at 1 × 10-5 mol/l concentration.

Fig. 4
Fig. 4

Two-photon induced fluorescence spectrum when pumped by 550–670 nm ps laser beam.

Fig. 5
Fig. 5

Total (a), linear (b), and nonlinear (c) transmittance of BPAS solution at 550–670 nm.

Fig. 6
Fig. 6

(a) Two-photon absorption coefficient β and (b) molecular two-photon absorption cross-section σ2′ at 550–670 nm.

Fig. 7
Fig. 7

Total (a), linear (b) and nonlinear (c) transmittance of BPAS solution at 720–1000 nm.

Fig. 8
Fig. 8

(a) Three-photon absorption coefficient γ and (b) molecular three-photon absorption cross-section σ3′.

Fig. 9
Fig. 9

Optical power limiting properties of BPAS solution at 980 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

TNonlinear=TTotal/TLinear.
T=ln1+I0Lβ/I0Lβ,
I0=W/St,
hvβ=σ2NAd0×10-3.
dIz/dz=-γI3z,
Iz=I0/1+2γzI01/2.
γ=I02-I2/2zI02I2.
hv2γ=σ3NAd0×10-3,

Metrics