## Abstract

We fabricated and analyzed the output power and polarization characteristics of an efficient diode- side-pumped Nd:YAG rod laser with a diffusive optical cavity. The resonator stability conditions are analyzed graphically in the symmetric and asymmetric configurations for a plane-parallel resonator. On the basis of an analysis of the stability condition and mode size for the *r* and θ polarizations, we clarify how the stable laser operation is possible for various resonator configurations. In particular, we show that the critical stability region of around *g*
_{1}**g*
_{2}* = 0 provides a stable resonator in the symmetric resonator, even with a slight asymmetry. Experimentally, the output power and polarization characteristics are confirmed in association with the resonator stability condition.

© 2002 Optical Society of America

Full Article |

PDF Article
### Equations (9)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${\mathbf{\text{M}}}_{r,\mathrm{\theta}}=\left[\begin{array}{cc}cos{\mathrm{\Gamma}}_{r,\mathrm{\theta}}l& {\left({n}_{0}{\mathrm{\Gamma}}_{r,\mathrm{\theta}}\right)}^{-1}sin{\mathrm{\Gamma}}_{r,\mathrm{\theta}}l\\ -{n}_{0}{\mathrm{\Gamma}}_{r,\mathrm{\theta}}sin{\mathrm{\Gamma}}_{r,\mathrm{\theta}}l& cos{\mathrm{\Gamma}}_{r,\mathrm{\theta}}l\end{array}\right],$$
(2)
$${n}_{2r,2\mathrm{\theta}}={n}_{0}\frac{4\mathrm{\Delta}T}{{R}^{2}}\left(\frac{1}{2{n}_{0}}\frac{\mathrm{d}n}{\mathrm{d}T}+n_{0}{}^{2}\mathrm{\alpha}{C}_{r,\mathrm{\theta}}\right),$$
(3)
$$\mathrm{\Delta}T=\frac{A}{4\mathrm{\pi}l}\frac{1}{\left(\frac{1}{2}\frac{\mathrm{d}n}{\mathrm{d}T}+n_{0}{}^{3}\mathrm{\alpha}{C}_{r,\mathrm{\theta}}\right)}\frac{1}{{f}_{r,\mathrm{\theta}}}$$
(4)
$$=\left[\begin{array}{c}5.66\times {10}^{4}\left(r\right)\\ 7.07\times {10}^{4}\left(\mathrm{\theta}\right)\end{array}\right]\frac{{R}^{2}}{l}\frac{1}{{f}_{r,\mathrm{\theta}}}.$$
(5)
$${\mathbf{\text{M}}}_{\mathit{tot}}\equiv \left[\begin{array}{cc}A& B\\ C& D\end{array}\right]$$
(6)
$$\equiv \left[{d}_{1}\right]\left[{d}_{3}\right]\left[{M}_{r,\mathrm{\theta}}\right]\left[{d}_{3}\right]\left[{d}_{2}\right]\left[{d}_{2}\right]\left[{d}_{3}\right]\left[{M}_{r,\mathrm{\theta}}\right]\left[{d}_{3}\right]\left[{d}_{1}\right],$$
(7)
$$-1<\frac{A+D}{2}<1.$$
(8)
$$\mathrm{\omega}_{0}{}^{2}=\frac{\mathrm{\lambda}}{\mathrm{\pi}}\frac{2B}{{\left[4-{\left(A+D\right)}^{2}\right]}^{1/2}},$$
(9)
$$\mathrm{\omega}_{r}{}^{2}=\mathrm{\omega}_{0}{}^{2}\left(1+d_{1}{}^{2}/{z}_{R}^{2}\right),$$