Abstract

We fabricated and analyzed the output power and polarization characteristics of an efficient diode- side-pumped Nd:YAG rod laser with a diffusive optical cavity. The resonator stability conditions are analyzed graphically in the symmetric and asymmetric configurations for a plane-parallel resonator. On the basis of an analysis of the stability condition and mode size for the r and θ polarizations, we clarify how the stable laser operation is possible for various resonator configurations. In particular, we show that the critical stability region of around g 1*g 2* = 0 provides a stable resonator in the symmetric resonator, even with a slight asymmetry. Experimentally, the output power and polarization characteristics are confirmed in association with the resonator stability condition.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yasui, “Efficient and stable operation of a high-brightness cw 500-W Nd:YAG rod laser,” Appl. Opt. 35, 2566–2569 (1996).
    [CrossRef] [PubMed]
  2. J. Lee, H.-J. Moon, J. Yi, B. Cha, “Efficient CW operation of TEM00 mode from a diffusive reflector-type diode-side pumped Nd:YAG laser,” Jpn. J. Appl. Phys. 15, L315–L317 (1999).
    [CrossRef]
  3. R. Hua, S. Wada, H. Tashiro, “Versatile, compact, TEM00-mode resonator for side-pumped single-rod solid state lasers,” Appl. Opt. 40, 2468–2474 (2001).
    [CrossRef]
  4. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
    [CrossRef] [PubMed]
  5. H. P. Kortz, R. Iffländer, H. Weber, “Stability and beam divergence of multimode lasers with internal variable lenses,” Appl. Opt. 20, 4124–4134 (1981).
    [CrossRef] [PubMed]
  6. R. F. Teehan, J. C. Bienfang, C. A. Denman, “Power scaling and frequency stabilization of an injection-locked Nd:YAG rod laser,” Appl. Opt. 39, 3076–3084 (2000).
    [CrossRef]
  7. J. R. Park, J. Y. Lee, H. S. Kim, K. Y. Um, H. J. Kong, “Characteristics of a birefringence compensation scheme in Nd3+:YAG rods using a polarization rotator and imaging optics,” Opt. Rev. 4, 170–175 (1997).
    [CrossRef]
  8. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer, Berlin, 1996), Chap. 7, p. 402.
  9. J. Song, C. Li, N. S. Kim, K. Ueda, “Passively Q-switched diode-pumped continuous-wave Nd:YAG-Cr4+:YAG laser with high peak power and high pulse energy,” Appl. Opt. 39, 4954–4958 (2000).
    [CrossRef]

2001 (1)

2000 (2)

1999 (1)

J. Lee, H.-J. Moon, J. Yi, B. Cha, “Efficient CW operation of TEM00 mode from a diffusive reflector-type diode-side pumped Nd:YAG laser,” Jpn. J. Appl. Phys. 15, L315–L317 (1999).
[CrossRef]

1997 (1)

J. R. Park, J. Y. Lee, H. S. Kim, K. Y. Um, H. J. Kong, “Characteristics of a birefringence compensation scheme in Nd3+:YAG rods using a polarization rotator and imaging optics,” Opt. Rev. 4, 170–175 (1997).
[CrossRef]

1996 (1)

1986 (1)

1981 (1)

Bienfang, J. C.

Cha, B.

J. Lee, H.-J. Moon, J. Yi, B. Cha, “Efficient CW operation of TEM00 mode from a diffusive reflector-type diode-side pumped Nd:YAG laser,” Jpn. J. Appl. Phys. 15, L315–L317 (1999).
[CrossRef]

Denman, C. A.

Hua, R.

Iffländer, R.

Kim, H. S.

J. R. Park, J. Y. Lee, H. S. Kim, K. Y. Um, H. J. Kong, “Characteristics of a birefringence compensation scheme in Nd3+:YAG rods using a polarization rotator and imaging optics,” Opt. Rev. 4, 170–175 (1997).
[CrossRef]

Kim, N. S.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer, Berlin, 1996), Chap. 7, p. 402.

Kong, H. J.

J. R. Park, J. Y. Lee, H. S. Kim, K. Y. Um, H. J. Kong, “Characteristics of a birefringence compensation scheme in Nd3+:YAG rods using a polarization rotator and imaging optics,” Opt. Rev. 4, 170–175 (1997).
[CrossRef]

Kortz, H. P.

Lee, J.

J. Lee, H.-J. Moon, J. Yi, B. Cha, “Efficient CW operation of TEM00 mode from a diffusive reflector-type diode-side pumped Nd:YAG laser,” Jpn. J. Appl. Phys. 15, L315–L317 (1999).
[CrossRef]

Lee, J. Y.

J. R. Park, J. Y. Lee, H. S. Kim, K. Y. Um, H. J. Kong, “Characteristics of a birefringence compensation scheme in Nd3+:YAG rods using a polarization rotator and imaging optics,” Opt. Rev. 4, 170–175 (1997).
[CrossRef]

Li, C.

Magni, V.

Moon, H.-J.

J. Lee, H.-J. Moon, J. Yi, B. Cha, “Efficient CW operation of TEM00 mode from a diffusive reflector-type diode-side pumped Nd:YAG laser,” Jpn. J. Appl. Phys. 15, L315–L317 (1999).
[CrossRef]

Park, J. R.

J. R. Park, J. Y. Lee, H. S. Kim, K. Y. Um, H. J. Kong, “Characteristics of a birefringence compensation scheme in Nd3+:YAG rods using a polarization rotator and imaging optics,” Opt. Rev. 4, 170–175 (1997).
[CrossRef]

Song, J.

Tashiro, H.

Teehan, R. F.

Ueda, K.

Um, K. Y.

J. R. Park, J. Y. Lee, H. S. Kim, K. Y. Um, H. J. Kong, “Characteristics of a birefringence compensation scheme in Nd3+:YAG rods using a polarization rotator and imaging optics,” Opt. Rev. 4, 170–175 (1997).
[CrossRef]

Wada, S.

Weber, H.

Yasui, K.

Yi, J.

J. Lee, H.-J. Moon, J. Yi, B. Cha, “Efficient CW operation of TEM00 mode from a diffusive reflector-type diode-side pumped Nd:YAG laser,” Jpn. J. Appl. Phys. 15, L315–L317 (1999).
[CrossRef]

Appl. Opt. (6)

Jpn. J. Appl. Phys. (1)

J. Lee, H.-J. Moon, J. Yi, B. Cha, “Efficient CW operation of TEM00 mode from a diffusive reflector-type diode-side pumped Nd:YAG laser,” Jpn. J. Appl. Phys. 15, L315–L317 (1999).
[CrossRef]

Opt. Rev. (1)

J. R. Park, J. Y. Lee, H. S. Kim, K. Y. Um, H. J. Kong, “Characteristics of a birefringence compensation scheme in Nd3+:YAG rods using a polarization rotator and imaging optics,” Opt. Rev. 4, 170–175 (1997).
[CrossRef]

Other (1)

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer, Berlin, 1996), Chap. 7, p. 402.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of a threefold symmetric pump head consisting of a Nd:YAG rod, a cooling sleeve, a diffusive optical cavity, and three diode array modules.

Fig. 2
Fig. 2

Fluorescence distribution measured for the middle of the crystal rod.

Fig. 3
Fig. 3

Thermal focal lengths and their reciprocal thermal focal lengths depending on the pump power at both lasing and nonlasing conditions.

Fig. 4
Fig. 4

Stability condition of the plane-parallel resonator calculated for the asymmetric configuration.

Fig. 5
Fig. 5

Fundamental beam radius calculated for the asymmetric resonator with (a) d 1 = 8 cm and d 2 = 17.5 cm, and (b) the d 1 = 25 cm and d 2 = 23 cm.

Fig. 6
Fig. 6

Stability condition of the plane-parallel resonator calculated for the symmetric configuration.

Fig. 7
Fig. 7

Fundamental beam radius calculated for (a) the symmetric resonator with the d 1 = d 2 = 17.5 cm and (b) the slightly asymmetric resonator with the d 1 = 18 cm and d 2 = 17.5 cm.

Fig. 8
Fig. 8

Dependence of the laser output power on the distance of an output coupler in the asymmetric resonator.

Fig. 9
Fig. 9

Polarization of laser beam profiles measured at (a) the region (I), (b) the region (II), and (c) the region (IV).

Fig. 10
Fig. 10

Dependence of the laser output power on the distance of an output coupler in the symmetric and slightly asymmetric resonator.

Fig. 11
Fig. 11

Laser beam profiles for the slightly asymmetric resonator measured at the input pump powers of (a) 320 W, (b) 335 W, and (c) 350 W.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Mr,θ=cos Γr,θln0Γr,θ-1 sin Γr,θl-n0Γr,θ sin Γr,θlcos Γr,θl,
n2r,2θ=n04ΔTR212n0dndT+n02αCr,θ,
ΔT=A4πl112dndT+n03αCr,θ1fr,θ
=5.66×104r7.07×104θR2l1fr,θ.
MtotABCD
d1d3Mr,θd3d2d2d3Mr,θd3d1,
-1<A+D2<1.
ω02=λπ2B4-A+D21/2,
ωr2=ω021+d12/zR2,

Metrics