Abstract

The design and operation of a noncontact surface profilometry system based on the time-correlated single-photon-counting technique are described. This system has a robust optomechanical design and uses an eye-safe laser that makes it particularly suitable for operation in an uncontrolled industrial environment. The sensitivity of the photon-counting technique permits its use on a variety of target materials, and its mode of operation does not require the continual presence of an operator. The system described has been optimized for a 1–25-m standoff, has a distance repeatability of <30 µm, and has a transverse spatial resolution of ∼60 µm at a 2-m standoff and ∼400 µm at a 13-m standoff.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
    [CrossRef]
  2. J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
    [CrossRef]
  3. G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
    [CrossRef]
  4. J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298–7304 (1998).
    [CrossRef]
  5. D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).
  6. M. Umasuthan, A. M. Wallace, J. S. Massa, G. S. Buller, A. C. Walker, “Processing time-correlated single photon data to acquire range images,” IEEE Proc. Vision Image Signal Process. 145(4), 237–243 (1998).
    [CrossRef]
  7. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
    [CrossRef]
  8. A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
    [CrossRef]
  9. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
    [CrossRef]
  10. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
    [CrossRef] [PubMed]

1998 (2)

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298–7304 (1998).
[CrossRef]

M. Umasuthan, A. M. Wallace, J. S. Massa, G. S. Buller, A. C. Walker, “Processing time-correlated single photon data to acquire range images,” IEEE Proc. Vision Image Signal Process. 145(4), 237–243 (1998).
[CrossRef]

1997 (1)

1996 (1)

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

1994 (1)

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

1992 (2)

G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

1989 (2)

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Buller, G. S.

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298–7304 (1998).
[CrossRef]

M. Umasuthan, A. M. Wallace, J. S. Massa, G. S. Buller, A. C. Walker, “Processing time-correlated single photon data to acquire range images,” IEEE Proc. Vision Image Signal Process. 145(4), 237–243 (1998).
[CrossRef]

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
[CrossRef] [PubMed]

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Cavenett, B. C.

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

Cova, S.

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298–7304 (1998).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
[CrossRef]

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Fancey, S. J.

Ghioni, M.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Kuselewicz, R.

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Lacaita, A.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Louis, T. A.

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Massa, J. S.

M. Umasuthan, A. M. Wallace, J. S. Massa, G. S. Buller, A. C. Walker, “Processing time-correlated single photon data to acquire range images,” IEEE Proc. Vision Image Signal Process. 145(4), 237–243 (1998).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298–7304 (1998).
[CrossRef]

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
[CrossRef] [PubMed]

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

O’Connor, D. V.

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Oudar, J. L.

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Phillips, D.

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Prior, K. A.

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

Rao, E. V. K.

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Ripamonti, G.

G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Samori, C.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

Sfez, B. G.

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Simpson, J.

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

Umasuthan, M.

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298–7304 (1998).
[CrossRef]

M. Umasuthan, A. M. Wallace, J. S. Massa, G. S. Buller, A. C. Walker, “Processing time-correlated single photon data to acquire range images,” IEEE Proc. Vision Image Signal Process. 145(4), 237–243 (1998).
[CrossRef]

Walker, A. C.

M. Umasuthan, A. M. Wallace, J. S. Massa, G. S. Buller, A. C. Walker, “Processing time-correlated single photon data to acquire range images,” IEEE Proc. Vision Image Signal Process. 145(4), 237–243 (1998).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298–7304 (1998).
[CrossRef]

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
[CrossRef] [PubMed]

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Wallace, A. M.

Zappa, F.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
[CrossRef]

Appl. Opt. (2)

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298–7304 (1998).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

Electron. Lett. (1)

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

IEEE Proc. Vision Image Signal Process. (1)

M. Umasuthan, A. M. Wallace, J. S. Massa, G. S. Buller, A. C. Walker, “Processing time-correlated single photon data to acquire range images,” IEEE Proc. Vision Image Signal Process. 145(4), 237–243 (1998).
[CrossRef]

J. Lightwave Technol. (1)

G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Other (1)

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the principal components of the TCSPC ranging system.

Fig. 2
Fig. 2

Photograph of the TCSPC ranging system with the cover removed to show the layout of optical components on side (b) (see Fig. 5).

Fig. 3
Fig. 3

Histogram of photon-count data. The target peak is on the left and the reference peak is on the right.

Fig. 4
Fig. 4

Optical system layout of side (a) of the optimized TCSPC ranging system. M, mirror; H, half-wave plate; PB, polarizing beam splitter; RP, Risley prism; IF, interference filter; S, shutter solenoid; MO, microscope objective.

Fig. 5
Fig. 5

Optical system layout of side (b) of the optimized TCSPC ranging system. M, mirror; H, half-wave plate; PB, polarizing beam splitter; RP, Risley prism; IF, interference filter; D, doublet; S, shutter solenoid; MO, microscope objective; W, stepper-motor-driven half-wave plate.

Fig. 6
Fig. 6

Transmission characteristics of a half-wave plate and polarizer combination as measured with a photon-counting system operating at high dead time.

Fig. 7
Fig. 7

(a) Intensity image of a metallic shield showing the Heriot-Watt University crest. (b) Depth image of the shield obtained with the TCSPC system. The 3-D data are sampled at a spatial interval of 2 mm and contain ∼6.8 × 104 data points.

Fig. 8
Fig. 8

Intensity mapped 3-D image of a model plane. The 3-D data are sampled at a spatial interval of 1.5 mm and contain ∼1.4 × 104 data points.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Rm=1τ1-exp-RT sin22αT+RR sin22αRτ,
Rmax=1τ;
Rm=RT sin22αT+RR sin22αR,

Metrics