Abstract

We present a novel scheme based on sequential writing for fabrication of advanced fiber Bragg gratings. As opposed to earlier sequential methods this technique uses a cw UV laser source and allows for very precise control and repetitivity of the formation of the gratings. Furthermore it is possible to use high average irradiances without destroying the fiber, resulting in considerable reduction in fabrication time for complex gratings. The method has been applied to several test gratings, which proved its versatility and quality.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Optimized square passband fiber Bragg grating filter with inband flat group delay response,” Electron. Lett. 34, 800–802 (1998).
    [CrossRef]
  2. M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Tech. Lett. 10, 842–844 (1998).
    [CrossRef]
  3. J. Martin, F. Oulette, “Novel writing technique of long and highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994).
    [CrossRef]
  4. R. Kashyap, P. F. McKee, R. J. Campbell, D. L. Williams, “Novel method of producing all-fiber photo-induced chirped gratings,” Electron. Lett. 30, 996–998 (1994).
    [CrossRef]
  5. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Postdeadline Papers, Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. PD 77.
  6. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20, 2051–2053 (1995).
    [CrossRef] [PubMed]
  7. R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Postdeadline Papers, Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. PD 1.
  8. A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
    [CrossRef]
  9. P. Sansonetti, F. Bakhti, I. Riant, B. Poumellec, “Construction method for large size Bragg grating within optical fiber,” patentFR2768819 (26March1999).

1998 (2)

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Optimized square passband fiber Bragg grating filter with inband flat group delay response,” Electron. Lett. 34, 800–802 (1998).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Tech. Lett. 10, 842–844 (1998).
[CrossRef]

1997 (1)

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[CrossRef]

1995 (1)

1994 (2)

J. Martin, F. Oulette, “Novel writing technique of long and highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994).
[CrossRef]

R. Kashyap, P. F. McKee, R. J. Campbell, D. L. Williams, “Novel method of producing all-fiber photo-induced chirped gratings,” Electron. Lett. 30, 996–998 (1994).
[CrossRef]

Albert, J.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Postdeadline Papers, Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. PD 77.

Asseh, A.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[CrossRef]

R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Postdeadline Papers, Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. PD 1.

Bakhti, F.

P. Sansonetti, F. Bakhti, I. Riant, B. Poumellec, “Construction method for large size Bragg grating within optical fiber,” patentFR2768819 (26March1999).

Barcelos, S.

Bilodeau, F.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Postdeadline Papers, Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. PD 77.

Campbell, R. J.

R. Kashyap, P. F. McKee, R. J. Campbell, D. L. Williams, “Novel method of producing all-fiber photo-induced chirped gratings,” Electron. Lett. 30, 996–998 (1994).
[CrossRef]

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Tech. Lett. 10, 842–844 (1998).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Optimized square passband fiber Bragg grating filter with inband flat group delay response,” Electron. Lett. 34, 800–802 (1998).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20, 2051–2053 (1995).
[CrossRef] [PubMed]

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Tech. Lett. 10, 842–844 (1998).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Optimized square passband fiber Bragg grating filter with inband flat group delay response,” Electron. Lett. 34, 800–802 (1998).
[CrossRef]

Hill, K. O.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Postdeadline Papers, Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. PD 77.

Ibsen, M.

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Optimized square passband fiber Bragg grating filter with inband flat group delay response,” Electron. Lett. 34, 800–802 (1998).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Tech. Lett. 10, 842–844 (1998).
[CrossRef]

Johnson, D. C.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Postdeadline Papers, Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. PD 77.

Kashyap, R.

R. Kashyap, P. F. McKee, R. J. Campbell, D. L. Williams, “Novel method of producing all-fiber photo-induced chirped gratings,” Electron. Lett. 30, 996–998 (1994).
[CrossRef]

Kitagawa, T.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Postdeadline Papers, Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. PD 77.

Laming, M. I.

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Optimized square passband fiber Bragg grating filter with inband flat group delay response,” Electron. Lett. 34, 800–802 (1998).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Tech. Lett. 10, 842–844 (1998).
[CrossRef]

Laming, R. I.

Loh, W. H.

Malo, B.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Postdeadline Papers, Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. PD 77.

Martin, J.

J. Martin, F. Oulette, “Novel writing technique of long and highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994).
[CrossRef]

McKee, P. F.

R. Kashyap, P. F. McKee, R. J. Campbell, D. L. Williams, “Novel method of producing all-fiber photo-induced chirped gratings,” Electron. Lett. 30, 996–998 (1994).
[CrossRef]

Oulette, F.

J. Martin, F. Oulette, “Novel writing technique of long and highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994).
[CrossRef]

Poumellec, B.

P. Sansonetti, F. Bakhti, I. Riant, B. Poumellec, “Construction method for large size Bragg grating within optical fiber,” patentFR2768819 (26March1999).

Riant, I.

P. Sansonetti, F. Bakhti, I. Riant, B. Poumellec, “Construction method for large size Bragg grating within optical fiber,” patentFR2768819 (26March1999).

Sahlgren, B.

R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Postdeadline Papers, Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. PD 1.

Sahlgren, B. E.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[CrossRef]

Sandgren, S.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[CrossRef]

R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Postdeadline Papers, Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. PD 1.

Sansonetti, P.

P. Sansonetti, F. Bakhti, I. Riant, B. Poumellec, “Construction method for large size Bragg grating within optical fiber,” patentFR2768819 (26March1999).

Storøy, H.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[CrossRef]

Stubbe, R.

R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Postdeadline Papers, Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. PD 1.

Stubbe, R. A. H.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[CrossRef]

Takiguchi, K.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Postdeadline Papers, Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. PD 77.

Thériault, S.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Postdeadline Papers, Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. PD 77.

Williams, D. L.

R. Kashyap, P. F. McKee, R. J. Campbell, D. L. Williams, “Novel method of producing all-fiber photo-induced chirped gratings,” Electron. Lett. 30, 996–998 (1994).
[CrossRef]

Zervas, M. N.

Electron. Lett. (3)

J. Martin, F. Oulette, “Novel writing technique of long and highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994).
[CrossRef]

R. Kashyap, P. F. McKee, R. J. Campbell, D. L. Williams, “Novel method of producing all-fiber photo-induced chirped gratings,” Electron. Lett. 30, 996–998 (1994).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Optimized square passband fiber Bragg grating filter with inband flat group delay response,” Electron. Lett. 34, 800–802 (1998).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

M. Ibsen, M. K. Durkin, M. J. Cole, M. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Tech. Lett. 10, 842–844 (1998).
[CrossRef]

J. Lightwave Technol. (1)

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[CrossRef]

Opt. Lett. (1)

Other (3)

P. Sansonetti, F. Bakhti, I. Riant, B. Poumellec, “Construction method for large size Bragg grating within optical fiber,” patentFR2768819 (26March1999).

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Postdeadline Papers, Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. PD 77.

R. Stubbe, B. Sahlgren, S. Sandgren, A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Postdeadline Papers, Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. PD 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the fiber Bragg grating-fabrication system.

Fig. 2
Fig. 2

Black lines, excerpt from the sawtooth waveform used to drive the piezoelements for a uniform grating with a phase shift Δπ gray lines, continuation of the waveform without the phase shift.

Fig. 3
Fig. 3

(a) Black lines, excerpt from the sawtooth waveform needed to drive the piezoelements for a grating with 50% visibility; gray lines, waveform resulting in an unapodized grating with the same phase. The waveform alternates between leading and lagging Δφ = π/3 compared with the unapodized case. (b) Same as (a) but with different positions for jumping to the other phase offset. For further explanation, see text.

Fig. 4
Fig. 4

Reflection spectrum of diamonds, a 10-mm-long unapodized grating and, solid curve, the simulated ideal response.

Fig. 5
Fig. 5

Reflection spectrum in decibel scale, diamonds, of the same grating as in Fig. 4; curve, simulated ideal response.

Fig. 6
Fig. 6

Reflection spectrum of a 10-mm-long Hamming apodized grating. The sidelobes of the unapodized grating in Fig. 5 are completely removed.

Fig. 7
Fig. 7

Reflection spectrum of a 20-mm-long sinc apodized grating containing seven sidelobes. To suppress the sidelobes, the grating was further apodized with a raised cosine profile.

Fig. 8
Fig. 8

Reflection spectrum in decibel scale of the same grating as in Fig. 7. The sideband rejection is at least 20 dB.

Fig. 9
Fig. 9

Reflection spectrum of a 20-mm-long and 10-nm chirped grating with super-Gaussian apodization.

Fig. 10
Fig. 10

Reflection spectrum in decibel scale of the same grating as in Fig. 9. The sideband rejection is ∼22 dB.

Fig. 11
Fig. 11

Reflection spectrum of 80 superposed Hamming apodized 40-mm-long gratings with 50-GHz spacing.

Fig. 12
Fig. 12

Reflection spectrum of one of the channels in the comb filter in Fig. 11. The sideband rejection is ∼30 dB.

Metrics