Abstract

An extension to the two-step physical retrieval algorithm was developed. Combined clear-sky multitemporal and multispectral observations were used to retrieve the atmospheric temperature-humidity profile, land-surface temperature, and surface emissivities in the midwave (3–5 µm) and long-wave (8–14.5 µm) regions. The extended algorithm was tested with both simulated and real data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator. A sensitivity study and error analysis demonstrate that retrieval performance is improved by the extended algorithm. The extended algorithm is relatively insensitive to the uncertainties simulated for the real observations. The extended algorithm was also applied to real MODIS daytime and nighttime observations and showed that it is capable of retrieving medium-scale atmospheric temperature water vapor and retrieving surface temperature emissivity with retrieval accuracy similar to that achieved by the Geostationary Operational Environmental Satellite (GOES) but at a spatial resolution higher than that of GOES.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Susskind, J. Joiner, M. T. Chahine, “Determination of temperature and moisture profiles in a cloudy atmosphere using AIRS/AMSU,” in High Spectral Resolution Infrared Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 19 of NATO Advanced Science Institute Series (Springer-Verlag, Berlin, 1993), pp. 149–161.
    [Crossref]
  2. Z. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).
    [Crossref]
  3. L. M. McMillin, “Estimation of sea surface temperatures from two infrared window measurements with different absorption,” J. Geophys. Res. 80, 113–5117 (1975).
    [Crossref]
  4. L. M. McMillin, D. S. Crosby, “Theory and validation of the multiple window sea surface temperature technique,” J. Geophys. Res. 89, 3655–3661 (1984).
    [Crossref]
  5. C. C. Walton, “Nonlinear multichannel algorithms for estimated sea surface temperature with AVHRR satellite data,” J. Appl. Meteorol. 27, 115–124 (1988).
    [Crossref]
  6. N. R. Nalli, W. L. Smith, “Improved sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527–10542 (1998).
    [Crossref]
  7. Z. Wan, J. Dozier, “Land-surface temperature measurement from space: physical principles and inverse modeling,” IEEE Trans. Geosci. Remote Sens. 27, 268–277 (1989).
    [Crossref]
  8. J. C. Price, “Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR,” J. Geophys. Res. 79, 5039–5044 (1984).
  9. F. Becker, Z.-L. Li, “Toward a local split window method over land surface,” Int. J. Remote Sens. 11, 369–393 (1990).
    [Crossref]
  10. Y. H. Kerr, J. P. Lagouarde, J. Jmbernon, “Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm,” Remote Sens. Environ. 41, 197–209 (1992).
    [Crossref]
  11. A. J. Prata, “Land surface temperature derived from the advanced very high resolution radiometer and the along-track scanning radiometer. 2. Experimental results and validation of AVHRR algorithms,” J. Geophys. Res. 99, 13025–13058 (1994).
    [Crossref]
  12. Z. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).
    [Crossref]
  13. Z.-L. Li, F. Becker, “Feasibility of land surface temperature and emissivity determination form AVHRR data,” Remote Sens. Environ. 43, 67–85 (1993).
    [Crossref]
  14. Z.-L. Li, F. Petitcolin, R. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China Ser. E 43, 23–33 (2000).
    [Crossref]
  15. X. L. Ma, T. J. Schmit, W. L. Smith, “A nonlinear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
    [Crossref]
  16. W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.
  17. W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.
  18. W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
    [Crossref]
  19. W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and observing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991).
    [Crossref] [PubMed]
  20. W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” in The Technical Proceedings of the Second International TOVS Study Conference (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.
  21. H.-L. Huang, “An analysis of the characteristics of the atmospheric profiles obtained with the High-resolution Interferometer Sounder (HIS),” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1989).
  22. C. H. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988).
    [Crossref]
  23. Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature-humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000).
    [Crossref]
  24. X. L. Ma, Z. M. Wan, C. C. Moeller, W. P. Menzel, L. E. Gumley, Y. L. Zhang, “Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm,” Appl. Opt. 39, 3537–3550 (2000).
    [Crossref]
  25. M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
    [Crossref]
  26. Z. Wan, “Estimate of noise and systematic error in early thermal infrared data of the Moderate Resolution Imaging Spectroradiometer (MODIS),” J. Remote Sens. Environ. 80, 47–54 (2002).
    [Crossref]
  27. W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976).
    [Crossref]
  28. Z.-L. Li, F. Becker, M. P. Stoll, Z. Wan, Y. Zhang, “Channel selection for soil spectrum reconstruction in 8–13 µm region,” J. Geophys. Res. 104, 22271–22285 (1999).
    [Crossref]
  29. W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1: measurement characteristics and data reduction procedures,” NOAA Tech. Memo. National Environmental Satellite Service57, (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.
  30. H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study Conference (Bureau of Meteorology Research Center, Melbourne, 1999), pp. 564–573.
  31. W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
    [Crossref]
  32. J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
    [Crossref]
  33. J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994).
    [Crossref]
  34. W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “The retrieval of planetary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333 (1999).
    [Crossref]
  35. W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “Meteorological applications of temperature and water vapor retrieval from the ground-based atmospheric emitted radiance interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1999).
    [Crossref]
  36. T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
    [Crossref]
  37. J. E. Hoke, N. A. Phillips, G. J. DiMego, J. J. Tuccillo, J. G. Sela, “The regional analysis and forecast system of the National Meteorological Center,” Weather Forecast. 4, 323–334 (1989).
    [Crossref]
  38. W. B. Rossow, L. C. Garder, “Selection of a map grid for data analysis and archival,” J. Clim. Appl. Meteorol. 23, 1253–1257 (1984).
    [Crossref]
  39. T. H. Painter, D. A. Roberts, R. O. Green, J. Dozier, “The effects of grain size on spectral mixture analysis of snow-covered area from AVIRIS data,” Remote Sens. Environ. 65, 320–332 (1998).
    [Crossref]
  40. D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, R. O. Green, “Mapping chaparral in the Santa Monica mountains using multiple endmembers spectral mixture models,” Remote Sens. Environ. 65, 267–279 (1998).
    [Crossref]
  41. L. J. Roujean, M. Leroy, P. Y. Deschamps, “A bi-directional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97, 445–468 (1992).
    [Crossref]
  42. W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
    [Crossref]
  43. W. C. Synder, Z. Wan, “BRDF models to predict spectral reflectance and emissivity in the thermal infrared,” IEEE Trans. Geosci. Remote Sens. 36, 214–225 (1998).
    [Crossref]

2002 (2)

Z. Wan, “Estimate of noise and systematic error in early thermal infrared data of the Moderate Resolution Imaging Spectroradiometer (MODIS),” J. Remote Sens. Environ. 80, 47–54 (2002).
[Crossref]

T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
[Crossref]

2000 (3)

Z.-L. Li, F. Petitcolin, R. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China Ser. E 43, 23–33 (2000).
[Crossref]

Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature-humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000).
[Crossref]

X. L. Ma, Z. M. Wan, C. C. Moeller, W. P. Menzel, L. E. Gumley, Y. L. Zhang, “Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm,” Appl. Opt. 39, 3537–3550 (2000).
[Crossref]

1999 (4)

X. L. Ma, T. J. Schmit, W. L. Smith, “A nonlinear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
[Crossref]

Z.-L. Li, F. Becker, M. P. Stoll, Z. Wan, Y. Zhang, “Channel selection for soil spectrum reconstruction in 8–13 µm region,” J. Geophys. Res. 104, 22271–22285 (1999).
[Crossref]

W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “The retrieval of planetary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333 (1999).
[Crossref]

W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “Meteorological applications of temperature and water vapor retrieval from the ground-based atmospheric emitted radiance interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1999).
[Crossref]

1998 (4)

T. H. Painter, D. A. Roberts, R. O. Green, J. Dozier, “The effects of grain size on spectral mixture analysis of snow-covered area from AVIRIS data,” Remote Sens. Environ. 65, 320–332 (1998).
[Crossref]

D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, R. O. Green, “Mapping chaparral in the Santa Monica mountains using multiple endmembers spectral mixture models,” Remote Sens. Environ. 65, 267–279 (1998).
[Crossref]

W. C. Synder, Z. Wan, “BRDF models to predict spectral reflectance and emissivity in the thermal infrared,” IEEE Trans. Geosci. Remote Sens. 36, 214–225 (1998).
[Crossref]

N. R. Nalli, W. L. Smith, “Improved sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527–10542 (1998).
[Crossref]

1997 (2)

Z. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).
[Crossref]

W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
[Crossref]

1996 (2)

Z. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).
[Crossref]

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

1994 (2)

A. J. Prata, “Land surface temperature derived from the advanced very high resolution radiometer and the along-track scanning radiometer. 2. Experimental results and validation of AVHRR algorithms,” J. Geophys. Res. 99, 13025–13058 (1994).
[Crossref]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994).
[Crossref]

1993 (1)

Z.-L. Li, F. Becker, “Feasibility of land surface temperature and emissivity determination form AVHRR data,” Remote Sens. Environ. 43, 67–85 (1993).
[Crossref]

1992 (3)

Y. H. Kerr, J. P. Lagouarde, J. Jmbernon, “Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm,” Remote Sens. Environ. 41, 197–209 (1992).
[Crossref]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[Crossref]

L. J. Roujean, M. Leroy, P. Y. Deschamps, “A bi-directional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97, 445–468 (1992).
[Crossref]

1991 (1)

1990 (2)

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

F. Becker, Z.-L. Li, “Toward a local split window method over land surface,” Int. J. Remote Sens. 11, 369–393 (1990).
[Crossref]

1989 (2)

Z. Wan, J. Dozier, “Land-surface temperature measurement from space: physical principles and inverse modeling,” IEEE Trans. Geosci. Remote Sens. 27, 268–277 (1989).
[Crossref]

J. E. Hoke, N. A. Phillips, G. J. DiMego, J. J. Tuccillo, J. G. Sela, “The regional analysis and forecast system of the National Meteorological Center,” Weather Forecast. 4, 323–334 (1989).
[Crossref]

1988 (2)

C. C. Walton, “Nonlinear multichannel algorithms for estimated sea surface temperature with AVHRR satellite data,” J. Appl. Meteorol. 27, 115–124 (1988).
[Crossref]

C. H. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988).
[Crossref]

1984 (3)

L. M. McMillin, D. S. Crosby, “Theory and validation of the multiple window sea surface temperature technique,” J. Geophys. Res. 89, 3655–3661 (1984).
[Crossref]

J. C. Price, “Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR,” J. Geophys. Res. 79, 5039–5044 (1984).

W. B. Rossow, L. C. Garder, “Selection of a map grid for data analysis and archival,” J. Clim. Appl. Meteorol. 23, 1253–1257 (1984).
[Crossref]

1976 (1)

W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976).
[Crossref]

1975 (1)

L. M. McMillin, “Estimation of sea surface temperatures from two infrared window measurements with different absorption,” J. Geophys. Res. 80, 113–5117 (1975).
[Crossref]

Abel, P. G.

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1: measurement characteristics and data reduction procedures,” NOAA Tech. Memo. National Environmental Satellite Service57, (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

Arnold, G. T.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Barker-Schaaf, C.

W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
[Crossref]

Barnsley, M.

W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
[Crossref]

Becker, F.

Z.-L. Li, F. Becker, M. P. Stoll, Z. Wan, Y. Zhang, “Channel selection for soil spectrum reconstruction in 8–13 µm region,” J. Geophys. Res. 104, 22271–22285 (1999).
[Crossref]

Z.-L. Li, F. Becker, “Feasibility of land surface temperature and emissivity determination form AVHRR data,” Remote Sens. Environ. 43, 67–85 (1993).
[Crossref]

F. Becker, Z.-L. Li, “Toward a local split window method over land surface,” Int. J. Remote Sens. 11, 369–393 (1990).
[Crossref]

Brown, K. S.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Chahine, M. T.

J. Susskind, J. Joiner, M. T. Chahine, “Determination of temperature and moisture profiles in a cloudy atmosphere using AIRS/AMSU,” in High Spectral Resolution Infrared Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 19 of NATO Advanced Science Institute Series (Springer-Verlag, Berlin, 1993), pp. 149–161.
[Crossref]

Chalfant, M.

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1: measurement characteristics and data reduction procedures,” NOAA Tech. Memo. National Environmental Satellite Service57, (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

Church, R.

D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, R. O. Green, “Mapping chaparral in the Santa Monica mountains using multiple endmembers spectral mixture models,” Remote Sens. Environ. 65, 267–279 (1998).
[Crossref]

Cousins, D.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Crosby, D. S.

L. M. McMillin, D. S. Crosby, “Theory and validation of the multiple window sea surface temperature technique,” J. Geophys. Res. 89, 3655–3661 (1984).
[Crossref]

D’Aria, D. M.

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994).
[Crossref]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[Crossref]

Delst, P. V.

H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study Conference (Bureau of Meteorology Research Center, Melbourne, 1999), pp. 564–573.

Deschamps, P. Y.

L. J. Roujean, M. Leroy, P. Y. Deschamps, “A bi-directional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97, 445–468 (1992).
[Crossref]

DiMego, G. J.

J. E. Hoke, N. A. Phillips, G. J. DiMego, J. J. Tuccillo, J. G. Sela, “The regional analysis and forecast system of the National Meteorological Center,” Weather Forecast. 4, 323–334 (1989).
[Crossref]

Dozier, J.

T. H. Painter, D. A. Roberts, R. O. Green, J. Dozier, “The effects of grain size on spectral mixture analysis of snow-covered area from AVIRIS data,” Remote Sens. Environ. 65, 320–332 (1998).
[Crossref]

Z. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).
[Crossref]

Z. Wan, J. Dozier, “Land-surface temperature measurement from space: physical principles and inverse modeling,” IEEE Trans. Geosci. Remote Sens. 27, 268–277 (1989).
[Crossref]

Feltz, W. F.

T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
[Crossref]

W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “The retrieval of planetary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333 (1999).
[Crossref]

W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “Meteorological applications of temperature and water vapor retrieval from the ground-based atmospheric emitted radiance interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1999).
[Crossref]

Fitzgerald, M.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Garder, L. C.

W. B. Rossow, L. C. Garder, “Selection of a map grid for data analysis and archival,” J. Clim. Appl. Meteorol. 23, 1253–1257 (1984).
[Crossref]

Gardner, M.

D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, R. O. Green, “Mapping chaparral in the Santa Monica mountains using multiple endmembers spectral mixture models,” Remote Sens. Environ. 65, 267–279 (1998).
[Crossref]

Gazarik, M.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Grant, P. S.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Green, R. O.

T. H. Painter, D. A. Roberts, R. O. Green, J. Dozier, “The effects of grain size on spectral mixture analysis of snow-covered area from AVIRIS data,” Remote Sens. Environ. 65, 320–332 (1998).
[Crossref]

D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, R. O. Green, “Mapping chaparral in the Santa Monica mountains using multiple endmembers spectral mixture models,” Remote Sens. Environ. 65, 267–279 (1998).
[Crossref]

Grody, N.

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1: measurement characteristics and data reduction procedures,” NOAA Tech. Memo. National Environmental Satellite Service57, (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

Gumley, L. E.

X. L. Ma, Z. M. Wan, C. C. Moeller, W. P. Menzel, L. E. Gumley, Y. L. Zhang, “Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm,” Appl. Opt. 39, 3537–3550 (2000).
[Crossref]

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Hayden, C. H.

C. H. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988).
[Crossref]

Hayden, C. M.

W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” in The Technical Proceedings of the Second International TOVS Study Conference (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1: measurement characteristics and data reduction procedures,” NOAA Tech. Memo. National Environmental Satellite Service57, (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

Heil, J. N.

T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
[Crossref]

Hoke, J. E.

J. E. Hoke, N. A. Phillips, G. J. DiMego, J. J. Tuccillo, J. G. Sela, “The regional analysis and forecast system of the National Meteorological Center,” Weather Forecast. 4, 323–334 (1989).
[Crossref]

Howell, H.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Howell, H. B.

W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “Meteorological applications of temperature and water vapor retrieval from the ground-based atmospheric emitted radiance interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1999).
[Crossref]

W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “The retrieval of planetary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333 (1999).
[Crossref]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

Hu, B.

W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
[Crossref]

Huang, B.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Huang, H.-L.

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

H.-L. Huang, “An analysis of the characteristics of the atmospheric profiles obtained with the High-resolution Interferometer Sounder (HIS),” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1989).

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

Jmbernon, J.

Y. H. Kerr, J. P. Lagouarde, J. Jmbernon, “Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm,” Remote Sens. Environ. 41, 197–209 (1992).
[Crossref]

Joiner, J.

J. Susskind, J. Joiner, M. T. Chahine, “Determination of temperature and moisture profiles in a cloudy atmosphere using AIRS/AMSU,” in High Spectral Resolution Infrared Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 19 of NATO Advanced Science Institute Series (Springer-Verlag, Berlin, 1993), pp. 149–161.
[Crossref]

Jung, J.

T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
[Crossref]

Kerr, Y. H.

Y. H. Kerr, J. P. Lagouarde, J. Jmbernon, “Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm,” Remote Sens. Environ. 41, 197–209 (1992).
[Crossref]

King, M. D.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Knuteson, R. O.

W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “Meteorological applications of temperature and water vapor retrieval from the ground-based atmospheric emitted radiance interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1999).
[Crossref]

W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “The retrieval of planetary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333 (1999).
[Crossref]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

Koenig, E. W.

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

Lagouarde, J. P.

Y. H. Kerr, J. P. Lagouarde, J. Jmbernon, “Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm,” Remote Sens. Environ. 41, 197–209 (1992).
[Crossref]

LaPorte, D. D.

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

Larar, A.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Leroy, M.

L. J. Roujean, M. Leroy, P. Y. Deschamps, “A bi-directional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97, 445–468 (1992).
[Crossref]

Lewis, P.

W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
[Crossref]

Li, J.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Li, X.

W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
[Crossref]

Li, Z. L.

Z. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).
[Crossref]

Li, Z.-L.

Z.-L. Li, F. Petitcolin, R. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China Ser. E 43, 23–33 (2000).
[Crossref]

Z.-L. Li, F. Becker, M. P. Stoll, Z. Wan, Y. Zhang, “Channel selection for soil spectrum reconstruction in 8–13 µm region,” J. Geophys. Res. 104, 22271–22285 (1999).
[Crossref]

Z.-L. Li, F. Becker, “Feasibility of land surface temperature and emissivity determination form AVHRR data,” Remote Sens. Environ. 43, 67–85 (1993).
[Crossref]

F. Becker, Z.-L. Li, “Toward a local split window method over land surface,” Int. J. Remote Sens. 11, 369–393 (1990).
[Crossref]

Ma, X. L.

Mango, S.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

McMillin, L. M.

L. M. McMillin, D. S. Crosby, “Theory and validation of the multiple window sea surface temperature technique,” J. Geophys. Res. 89, 3655–3661 (1984).
[Crossref]

L. M. McMillin, “Estimation of sea surface temperatures from two infrared window measurements with different absorption,” J. Geophys. Res. 80, 113–5117 (1975).
[Crossref]

Menzel, W. P.

T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
[Crossref]

Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature-humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000).
[Crossref]

X. L. Ma, Z. M. Wan, C. C. Moeller, W. P. Menzel, L. E. Gumley, Y. L. Zhang, “Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm,” Appl. Opt. 39, 3537–3550 (2000).
[Crossref]

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Moeller, C. C.

X. L. Ma, Z. M. Wan, C. C. Moeller, W. P. Menzel, L. E. Gumley, Y. L. Zhang, “Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm,” Appl. Opt. 39, 3537–3550 (2000).
[Crossref]

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Mooney, D.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Muller, J.-P.

W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
[Crossref]

Myers, J. S.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Nalli, N. R.

N. R. Nalli, W. L. Smith, “Improved sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527–10542 (1998).
[Crossref]

Nelson, J. P.

T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
[Crossref]

Noel, A. P.

T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
[Crossref]

Osterwisch, F. G.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Painter, T. H.

T. H. Painter, D. A. Roberts, R. O. Green, J. Dozier, “The effects of grain size on spectral mixture analysis of snow-covered area from AVIRIS data,” Remote Sens. Environ. 65, 320–332 (1998).
[Crossref]

Petitcolin, F.

Z.-L. Li, F. Petitcolin, R. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China Ser. E 43, 23–33 (2000).
[Crossref]

Phillips, N. A.

J. E. Hoke, N. A. Phillips, G. J. DiMego, J. J. Tuccillo, J. G. Sela, “The regional analysis and forecast system of the National Meteorological Center,” Weather Forecast. 4, 323–334 (1989).
[Crossref]

Platnick, S. E.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Plokhenko, Y.

Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature-humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000).
[Crossref]

Prata, A. J.

A. J. Prata, “Land surface temperature derived from the advanced very high resolution radiometer and the along-track scanning radiometer. 2. Experimental results and validation of AVHRR algorithms,” J. Geophys. Res. 99, 13025–13058 (1994).
[Crossref]

Price, J. C.

J. C. Price, “Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR,” J. Geophys. Res. 79, 5039–5044 (1984).

Revercomb, H.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Revercomb, H. E.

W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “The retrieval of planetary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333 (1999).
[Crossref]

W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “Meteorological applications of temperature and water vapor retrieval from the ground-based atmospheric emitted radiance interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1999).
[Crossref]

W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and observing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991).
[Crossref] [PubMed]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

Roberts, D. A.

T. H. Painter, D. A. Roberts, R. O. Green, J. Dozier, “The effects of grain size on spectral mixture analysis of snow-covered area from AVIRIS data,” Remote Sens. Environ. 65, 320–332 (1998).
[Crossref]

D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, R. O. Green, “Mapping chaparral in the Santa Monica mountains using multiple endmembers spectral mixture models,” Remote Sens. Environ. 65, 267–279 (1998).
[Crossref]

Rossow, W. B.

W. B. Rossow, L. C. Garder, “Selection of a map grid for data analysis and archival,” J. Clim. Appl. Meteorol. 23, 1253–1257 (1984).
[Crossref]

Roujean, L. J.

L. J. Roujean, M. Leroy, P. Y. Deschamps, “A bi-directional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97, 445–468 (1992).
[Crossref]

Salisbury, J. W.

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994).
[Crossref]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[Crossref]

Scheer, G.

D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, R. O. Green, “Mapping chaparral in the Santa Monica mountains using multiple endmembers spectral mixture models,” Remote Sens. Environ. 65, 267–279 (1998).
[Crossref]

Schmit, T. J.

T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
[Crossref]

X. L. Ma, T. J. Schmit, W. L. Smith, “A nonlinear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
[Crossref]

Schreiner, A. J.

W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” in The Technical Proceedings of the Second International TOVS Study Conference (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.

Schriener, A. J.

W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.

Sela, J. G.

J. E. Hoke, N. A. Phillips, G. J. DiMego, J. J. Tuccillo, J. G. Sela, “The regional analysis and forecast system of the National Meteorological Center,” Weather Forecast. 4, 323–334 (1989).
[Crossref]

Silverman, S.

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

Sisko, C.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Smith, W.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Smith, W. L.

W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “Meteorological applications of temperature and water vapor retrieval from the ground-based atmospheric emitted radiance interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1999).
[Crossref]

W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “The retrieval of planetary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333 (1999).
[Crossref]

X. L. Ma, T. J. Schmit, W. L. Smith, “A nonlinear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
[Crossref]

N. R. Nalli, W. L. Smith, “Improved sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527–10542 (1998).
[Crossref]

W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and observing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991).
[Crossref] [PubMed]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976).
[Crossref]

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1: measurement characteristics and data reduction procedures,” NOAA Tech. Memo. National Environmental Satellite Service57, (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.

W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” in The Technical Proceedings of the Second International TOVS Study Conference (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

Sromovsky, L. A.

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

Stoll, M. P.

Z.-L. Li, F. Becker, M. P. Stoll, Z. Wan, Y. Zhang, “Channel selection for soil spectrum reconstruction in 8–13 µm region,” J. Geophys. Res. 104, 22271–22285 (1999).
[Crossref]

Strahler, A. H.

W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
[Crossref]

Susskind, J.

J. Susskind, J. Joiner, M. T. Chahine, “Determination of temperature and moisture profiles in a cloudy atmosphere using AIRS/AMSU,” in High Spectral Resolution Infrared Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 19 of NATO Advanced Science Institute Series (Springer-Verlag, Berlin, 1993), pp. 149–161.
[Crossref]

Synder, W. C.

W. C. Synder, Z. Wan, “BRDF models to predict spectral reflectance and emissivity in the thermal infrared,” IEEE Trans. Geosci. Remote Sens. 36, 214–225 (1998).
[Crossref]

Tsay, S.-C.

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

Tuccillo, J. J.

J. E. Hoke, N. A. Phillips, G. J. DiMego, J. J. Tuccillo, J. G. Sela, “The regional analysis and forecast system of the National Meteorological Center,” Weather Forecast. 4, 323–334 (1989).
[Crossref]

Ustin, S.

D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, R. O. Green, “Mapping chaparral in the Santa Monica mountains using multiple endmembers spectral mixture models,” Remote Sens. Environ. 65, 267–279 (1998).
[Crossref]

Wade, G. S.

T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
[Crossref]

Walton, C. C.

C. C. Walton, “Nonlinear multichannel algorithms for estimated sea surface temperature with AVHRR satellite data,” J. Appl. Meteorol. 27, 115–124 (1988).
[Crossref]

Wan, Z.

Z. Wan, “Estimate of noise and systematic error in early thermal infrared data of the Moderate Resolution Imaging Spectroradiometer (MODIS),” J. Remote Sens. Environ. 80, 47–54 (2002).
[Crossref]

Z.-L. Li, F. Becker, M. P. Stoll, Z. Wan, Y. Zhang, “Channel selection for soil spectrum reconstruction in 8–13 µm region,” J. Geophys. Res. 104, 22271–22285 (1999).
[Crossref]

W. C. Synder, Z. Wan, “BRDF models to predict spectral reflectance and emissivity in the thermal infrared,” IEEE Trans. Geosci. Remote Sens. 36, 214–225 (1998).
[Crossref]

Z. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).
[Crossref]

Z. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).
[Crossref]

Z. Wan, J. Dozier, “Land-surface temperature measurement from space: physical principles and inverse modeling,” IEEE Trans. Geosci. Remote Sens. 27, 268–277 (1989).
[Crossref]

Wan, Z. M.

Wanner, W.

W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
[Crossref]

Woolf, H. M.

W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “Meteorological applications of temperature and water vapor retrieval from the ground-based atmospheric emitted radiance interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1999).
[Crossref]

W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “The retrieval of planetary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333 (1999).
[Crossref]

W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for temperature and observing constituent profiles from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991).
[Crossref] [PubMed]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976).
[Crossref]

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1: measurement characteristics and data reduction procedures,” NOAA Tech. Memo. National Environmental Satellite Service57, (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study Conference (Bureau of Meteorology Research Center, Melbourne, 1999), pp. 564–573.

W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” in The Technical Proceedings of the Second International TOVS Study Conference (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.

Zhang, R.

Z.-L. Li, F. Petitcolin, R. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China Ser. E 43, 23–33 (2000).
[Crossref]

Zhang, W. J.

H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study Conference (Bureau of Meteorology Research Center, Melbourne, 1999), pp. 564–573.

Zhang, Y.

Z.-L. Li, F. Becker, M. P. Stoll, Z. Wan, Y. Zhang, “Channel selection for soil spectrum reconstruction in 8–13 µm region,” J. Geophys. Res. 104, 22271–22285 (1999).
[Crossref]

Zhang, Y. L.

Zhou, D.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

Appl. Opt. (2)

IEEE Trans. Geosci. Remote Sens. (4)

Z. Wan, J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).
[Crossref]

Z. Wan, Z. L. Li, “A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data,” IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).
[Crossref]

Z. Wan, J. Dozier, “Land-surface temperature measurement from space: physical principles and inverse modeling,” IEEE Trans. Geosci. Remote Sens. 27, 268–277 (1989).
[Crossref]

W. C. Synder, Z. Wan, “BRDF models to predict spectral reflectance and emissivity in the thermal infrared,” IEEE Trans. Geosci. Remote Sens. 36, 214–225 (1998).
[Crossref]

Int. J. Remote Sens. (1)

F. Becker, Z.-L. Li, “Toward a local split window method over land surface,” Int. J. Remote Sens. 11, 369–393 (1990).
[Crossref]

J. Appl. Meteorol. (6)

C. C. Walton, “Nonlinear multichannel algorithms for estimated sea surface temperature with AVHRR satellite data,” J. Appl. Meteorol. 27, 115–124 (1988).
[Crossref]

X. L. Ma, T. J. Schmit, W. L. Smith, “A nonlinear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999).
[Crossref]

C. H. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988).
[Crossref]

Y. Plokhenko, W. P. Menzel, “The effects of surface reflection on estimating the vertical temperature-humidity distribution from spectral infrared measurements,” J. Appl. Meteorol. 39, 3–14 (2000).
[Crossref]

W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—the GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
[Crossref]

W. F. Feltz, W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “Meteorological applications of temperature and water vapor retrieval from the ground-based atmospheric emitted radiance interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1999).
[Crossref]

J. Atmos. Ocean. Technol. (2)

W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, H. B. Howell, “The retrieval of planetary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333 (1999).
[Crossref]

M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol. 13, 777–794 (1996).
[Crossref]

J. Atmos. Sci. (1)

W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976).
[Crossref]

J. Clim. Appl. Meteorol. (1)

W. B. Rossow, L. C. Garder, “Selection of a map grid for data analysis and archival,” J. Clim. Appl. Meteorol. 23, 1253–1257 (1984).
[Crossref]

J. Geophys. Res. (8)

Z.-L. Li, F. Becker, M. P. Stoll, Z. Wan, Y. Zhang, “Channel selection for soil spectrum reconstruction in 8–13 µm region,” J. Geophys. Res. 104, 22271–22285 (1999).
[Crossref]

A. J. Prata, “Land surface temperature derived from the advanced very high resolution radiometer and the along-track scanning radiometer. 2. Experimental results and validation of AVHRR algorithms,” J. Geophys. Res. 99, 13025–13058 (1994).
[Crossref]

N. R. Nalli, W. L. Smith, “Improved sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527–10542 (1998).
[Crossref]

L. M. McMillin, “Estimation of sea surface temperatures from two infrared window measurements with different absorption,” J. Geophys. Res. 80, 113–5117 (1975).
[Crossref]

L. M. McMillin, D. S. Crosby, “Theory and validation of the multiple window sea surface temperature technique,” J. Geophys. Res. 89, 3655–3661 (1984).
[Crossref]

J. C. Price, “Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR,” J. Geophys. Res. 79, 5039–5044 (1984).

L. J. Roujean, M. Leroy, P. Y. Deschamps, “A bi-directional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97, 445–468 (1992).
[Crossref]

W. Wanner, A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. Barker-Schaaf, M. Barnsley, “Global retrieval of bi-directional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm,” J. Geophys. Res. 102, 17143–17161 (1997).
[Crossref]

J. Remote Sens. Environ. (1)

Z. Wan, “Estimate of noise and systematic error in early thermal infrared data of the Moderate Resolution Imaging Spectroradiometer (MODIS),” J. Remote Sens. Environ. 80, 47–54 (2002).
[Crossref]

Remote Sens. Environ. (6)

T. H. Painter, D. A. Roberts, R. O. Green, J. Dozier, “The effects of grain size on spectral mixture analysis of snow-covered area from AVIRIS data,” Remote Sens. Environ. 65, 320–332 (1998).
[Crossref]

D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, R. O. Green, “Mapping chaparral in the Santa Monica mountains using multiple endmembers spectral mixture models,” Remote Sens. Environ. 65, 267–279 (1998).
[Crossref]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 µm atmospheric window,” Remote Sens. Environ. 42, 83–106 (1992).
[Crossref]

J. W. Salisbury, D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 µm atmospheric window,” Remote Sens. Environ. 47, 345–361 (1994).
[Crossref]

Y. H. Kerr, J. P. Lagouarde, J. Jmbernon, “Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm,” Remote Sens. Environ. 41, 197–209 (1992).
[Crossref]

Z.-L. Li, F. Becker, “Feasibility of land surface temperature and emissivity determination form AVHRR data,” Remote Sens. Environ. 43, 67–85 (1993).
[Crossref]

Sci. China Ser. E (1)

Z.-L. Li, F. Petitcolin, R. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China Ser. E 43, 23–33 (2000).
[Crossref]

Wea. Forecasting (1)

T. J. Schmit, W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, G. S. Wade, “Validation and use of GOES sounder moisture information,” Wea. Forecasting 17, 139–154 (2002).
[Crossref]

Weather Forecast. (1)

J. E. Hoke, N. A. Phillips, G. J. DiMego, J. J. Tuccillo, J. G. Sela, “The regional analysis and forecast system of the National Meteorological Center,” Weather Forecast. 4, 323–334 (1989).
[Crossref]

Other (8)

W. L. Smith, H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, N. Grody, “NIMBUS-5 sounder data processing system. Part 1: measurement characteristics and data reduction procedures,” NOAA Tech. Memo. National Environmental Satellite Service57, (National Oceanic and Atmospheric Administration, Washington, D.C., 1974), pp. 36–41.

H. M. Woolf, P. V. Delst, W. J. Zhang, “NOAA-15 HIRS/3 and AMSU transmittance model validation,” in Proceedings of the Tenth International TOVS Study Conference (Bureau of Meteorology Research Center, Melbourne, 1999), pp. 564–573.

W. Smith, A. Larar, D. Zhou, C. Sisko, J. Li, B. Huang, H. Howell, H. Revercomb, D. Cousins, M. Gazarik, D. Mooney, S. Mango, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed. Proc. SPIE3756, 2–8 (1999).
[Crossref]

J. Susskind, J. Joiner, M. T. Chahine, “Determination of temperature and moisture profiles in a cloudy atmosphere using AIRS/AMSU,” in High Spectral Resolution Infrared Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 19 of NATO Advanced Science Institute Series (Springer-Verlag, Berlin, 1993), pp. 149–161.
[Crossref]

W. L. Smith, H. M. Woolf, A. J. Schriener, “Simultaneous retrieval of surface and atmospheric parameters: a physical and analytically direct approach,” in Advances in Remote Sensing Retrieval Method, A. Deepak, H. E. Flemming, M. T. Chahine, eds. (Deepak, Hampton, Va., 1985), pp. 221–232.

W. L. Smith, H. M. Woolf, H. B. Howell, H.-L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—application to measurements with the high spectral resolution interferometer sounder (HIS),” in Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Flemming, J. S. Theon, eds. (Deepak, Hampton, Va., 1989), pp. 189–202.

W. L. Smith, H. M. Woolf, C. M. Hayden, A. J. Schreiner, “The simultaneous retrieval export package,” in The Technical Proceedings of the Second International TOVS Study Conference (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wis., 1985), pp. 224–253.

H.-L. Huang, “An analysis of the characteristics of the atmospheric profiles obtained with the High-resolution Interferometer Sounder (HIS),” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wis., 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Histograms of the extended algorithm retrieval bias in surface temperature (T s ). The left-hand panel is for daytime data, and the right-hand panel is for nighttime data.

Fig. 2
Fig. 2

Same as Fig. 1, but for total precipitable water vapor (TPW) (cm).

Fig. 3
Fig. 3

Histograms of the extended algorithm retrieval bias for surface emissivity. The upper two panels are for MAS bands 31 (3.9 µm; left) and 32 (4.07 µm; right). The bottom two panels are for MAS bands 44 (10.44 µm; left) and 45 (10.95 µm; right).

Fig. 4
Fig. 4

Reflectance of MAS near-infrared band 7 (870 nm) on 18 March 1999 (21:13–21:16 UTC) over Madison, Wisconsin.

Fig. 5
Fig. 5

Surface emissivity images retrieved from MAS real observations for MAS bands 45 (10.95 µm; left) and 46 (11.94 µm; right).

Fig. 6
Fig. 6

Same as Fig. 5, but for MAS bands 31 (3.9 µm; left) and 32 (4.07 µm; right).

Fig. 7
Fig. 7

Surface emissivity images retrieved from MAS real observations for MAS bands 31 (3.9 µm; left) and 46 (11.94 µm; right) on 18 March 1999 (21:13–1:16 UTC) over Madison, Wisconsin.

Fig. 8
Fig. 8

Surface temperature (K) image retrieved from the MAS real observation on 18 March 1999 (21:13–21:16 UTC) over Madison, Wisconsin.

Fig. 9
Fig. 9

Temperature and water-vapor mixing ratio retrieval comparisons with AERI-GOES retrieval results.

Fig. 10
Fig. 10

Brightness temperature images at 10 × 10-km grid spacing for MODIS daytime (left-hand panel) and nighttime (right-hand panel) band 32 (12.03 µm) on 17 September (17:00–17:05 UTC) and 18 September (04:05–04:10 UTC) 2000. Lake Michigan is the cooler feature at the top center of the daytime image and at the middle center of the nighttime image (upside down on ascending nighttime overpass).

Fig. 11
Fig. 11

Same as Fig. 10, but remapped to equal-area projection. Daytime (upper panel) and nighttime (bottom panel) shown.

Fig. 12
Fig. 12

Daytime (upper panel) and nighttime (bottom panel) surface temperature (K) images retrieved from MODIS real observations on 17 September (17:00–17:05 UTC) and 18 September (04:05–04:10 UTC) 2000. Lake Michigan is recognizable near the top center of each image.

Fig. 13
Fig. 13

Same as Fig. 12, but the images were retrieved from the GOES real observations on 17 September (17:00 UTC) and 18 September (03:00 UTC) 2000. The images were generated from GOES retrievals displayed on the MODIS retrieval grid.

Fig. 14
Fig. 14

Same as Fig. 12, but for retrieved total precipitable water vapor (cm).

Fig. 15
Fig. 15

Same as Fig. 13, but for retrieved total precipitable water vapor (cm).

Tables (8)

Tables Icon

Table 1 Spectral Characteristics of the MODIS TIR Bands

Tables Icon

Table 2 Spectral Characteristics of the MAS TIR Bands in Its 1999 Configuration

Tables Icon

Table 3 Original Algorithm Retrieval rms of the Simulated Independent Data Set for 418 Daytime Cases, with Solar Contribution Removed and No Noise Added

Tables Icon

Table 4 Extended Algorithm Retrieval rms of the Simulated Independent Data Set for Daytime-Nighttime 418 Cases, with No Noise Added

Tables Icon

Table 5 Extended Algorithm Retrieval rms of the Simulated Global Independent Data Set for Daytime-Nighttime 440 Cases, Versus Daytime or Nighttime Data Set Alone

Tables Icon

Table 6 Retrieval rms of the Simulated Global Independent Data Set for Daytime-Nighttime 440 Cases with Guess SBF, No Noise Added and Constant Emissivity Versus True SBF, Noise Added and Changing Emissivity

Tables Icon

Table 7 MAS Band Brightness Temperatures in the Window Regions at Two Sounding Pixels, One over Lake Mendota and Another Over Nearby Land (20:15 UTC, 18 March 1999)

Tables Icon

Table 8 Lab Measured and Retrieved Surface Emissivities

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Rνj, μ=Bνj, tsνj, μτνj, μ, psSurface emission term-0psBνj, tpτνj, μ, ppdpAtmospheric emission term +1-νj, μ0psBνj, tpτ*νj, μ, -μ, ppdpSurface reflected downward atmospheric emission term +1-νj, ματ*νj, μ, -μ0, 0-μ0E0νjπ,Surface reflected downward solar beam term
δtBj=δtSKtsj+δjKj+i=1ls δtiKti, j+i=1lsδ lnqiKqi, j,
δy=Kδx,
K=KtKqKtsK,
δx=δtδ ln qδtsδ.
Kti, j=βi, j-τi, jpi+1-j×τ*i, jpiδpi,
βi, j=Bνj, ti/tiRνj, μ/tB.
Kqi, j=βsjts-tajτsj-21-jl=1ls βl, jτ*l, jδtl+l=ils βl, jτl, j+1-jτ*l, jδtl+C1-jτsjτs*jRνj, μ/tB ln τwi, jpi δpi+C1-jτsjτs*jRνj, μ/tB ln τw*i, jpi δpi.
Ktsls, j=βsjjτsj,
Kls, j=1Rνj, μ/tBBνj, tsτsj-l=1ls Bνj, tlτ*l, jpl δpl-Cτsjτs*j,
δx=i=1M fiνi=Vf,
δy=Kδx=KVf=Kˆf.
α=πfrμ;-μ0, ϕ0r,

Metrics