Abstract

The one-dimensional diffusion equation governing holographic grating formation in photopolymers, which includes both nonlocal material response and generalized dependence of the rate of polymerization on the illuminating intensity, has been previously solved under the two-harmonic expansion assumption. The resulting analytic expressions for the monomer and polymer concentrations have been derived and their ranges of validity tested in comparison with the more accurate numerical four-harmonic case. We used these analytic expressions to carry out a study of experimental results presented in the literature over a 30-year period. Automatic fitting of the data with these formulas allows material parameters, including the nonlocal chain-length variance σ, to be estimated. In this way, (i) a quantitative comparison of different materials can be made, and (ii) a standard form of experimental result presentation is proposed to facilitate such a procedure.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Sheridan, J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
    [CrossRef]
  2. G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [CrossRef]
  3. V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
    [CrossRef]
  4. S. Piazzolla, B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
    [CrossRef]
  5. J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Appl. Phys. 90, 3142–3148 (2001).
    [CrossRef]
  6. G. Zhao, P. Mouroulis, “Extension of a diffusion model for holographic photopolymers,” J. Mod. Opt. 42, 2571–2573 (1994).
    [CrossRef]
  7. J. H. Kwon, H. C. Chang, K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651–1657 (1999).
    [CrossRef]
  8. J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B (to be published).
  9. F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).
  10. F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of a self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
    [CrossRef]
  11. F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of a holographic recording material using an aerosol sealant,” J. Opt. 3, 20–25 (2001).
  12. J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
    [CrossRef]
  13. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, Oxford, U.K., 1980).
  14. H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  15. L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981).
  16. R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, UK, 1990).
  17. S. Wolfram, The Mathematica Book, 3rd ed. (Cambridge U. Press, Cambridge, UK, 1996).
  18. W. S. Colburn, K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
    [CrossRef] [PubMed]
  19. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593–601 (1975).
    [CrossRef] [PubMed]
  20. S. Calixto, “Dry polymer for holographic recording,” Appl. Opt. 26, 3904–3909 (1987).
    [CrossRef] [PubMed]
  21. C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications (II),” J. Opt. (Paris) 23, 73–79 (1992).
    [CrossRef]
  22. D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” J. Opt. 1, 251–268 (1992).
  23. A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, F. Amat-Guerri, “New photopolymer used as a holographic recording material,” Appl. Opt. 32, 3706–3707 (1993).
    [CrossRef] [PubMed]
  24. W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2403, 2–13 (1993); see also http://www.dupont.com/holographics/tech/tech3.pdf .
  25. S. Martin, C. A. Feely, V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
    [CrossRef] [PubMed]
  26. I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
    [CrossRef]
  27. S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, D. Levy, “Optimization of an acrylamide-based dry film used for holographic recording,” Appl. Opt. 37, 7604–7610 (1998).
    [CrossRef]
  28. F. Zhao, E. E. E. Frietman, X. Li, “Novel type of red-sensitive photopolymer system for optical storage,” in Advanced Optical Memories and Interfaces to Computer Storage, P. A. Mitkas, Z. U. Hason, eds., Proc. SPIE3468, 317–321 (1998).
    [CrossRef]
  29. H. S. Kim, C. S. Kyong, G. Y. Sung, C. H. Kwak, J. K. Lee, “Laser-induced polyacrylamide/PVA film with large diffraction index,” Ind. Eng. Chem. 5, 65–68 (1999).
  30. P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
    [CrossRef]
  31. C. Garcia, A. Fimia, I. Pascual, “Holographic behaviour of a photopolymer at high thicknesses and high monomer concentrations: mechanism of polymerisation,” Appl. Phys. B 72, 311–316 (2001).
    [CrossRef]
  32. J. T. Sheridan, M. Downey, F. T. O’Neill, “Diffusion-based model of holographic grating formation in photopolymers: generalised non-local material responses,” J. Opt. 3, 477–488 (2001).
  33. G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
    [CrossRef]
  34. P. Cheben, Institute for Microstructural Sciences, National Research Council of Canada (personal communication, 2001).

2001 (7)

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Appl. Phys. 90, 3142–3148 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of a self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of a holographic recording material using an aerosol sealant,” J. Opt. 3, 20–25 (2001).

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

C. Garcia, A. Fimia, I. Pascual, “Holographic behaviour of a photopolymer at high thicknesses and high monomer concentrations: mechanism of polymerisation,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

J. T. Sheridan, M. Downey, F. T. O’Neill, “Diffusion-based model of holographic grating formation in photopolymers: generalised non-local material responses,” J. Opt. 3, 477–488 (2001).

2000 (4)

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).

J. T. Sheridan, J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

S. Piazzolla, B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
[CrossRef]

1999 (2)

J. H. Kwon, H. C. Chang, K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651–1657 (1999).
[CrossRef]

H. S. Kim, C. S. Kyong, G. Y. Sung, C. H. Kwak, J. K. Lee, “Laser-induced polyacrylamide/PVA film with large diffraction index,” Ind. Eng. Chem. 5, 65–68 (1999).

1998 (2)

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, D. Levy, “Optimization of an acrylamide-based dry film used for holographic recording,” Appl. Opt. 37, 7604–7610 (1998).
[CrossRef]

1997 (2)

S. Martin, C. A. Feely, V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

1994 (2)

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

G. Zhao, P. Mouroulis, “Extension of a diffusion model for holographic photopolymers,” J. Mod. Opt. 42, 2571–2573 (1994).
[CrossRef]

1993 (1)

1992 (2)

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications (II),” J. Opt. (Paris) 23, 73–79 (1992).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” J. Opt. 1, 251–268 (1992).

1987 (1)

1975 (1)

1971 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Amat-Guerri, F.

Aubrecht, I.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Blaya, S.

Booth, B. L.

Born, M.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, Oxford, U.K., 1980).

Calixto, S.

Calvo, M. L.

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Carre, C.

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications (II),” J. Opt. (Paris) 23, 73–79 (1992).
[CrossRef]

Carretero, L.

Chang, H. C.

Cheben, P.

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

P. Cheben, Institute for Microstructural Sciences, National Research Council of Canada (personal communication, 2001).

Colburn, W. S.

Colvin, V. L.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Cooke, D. J.

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981).

Downey, M.

J. T. Sheridan, M. Downey, F. T. O’Neill, “Diffusion-based model of holographic grating formation in photopolymers: generalised non-local material responses,” J. Opt. 3, 477–488 (2001).

Feely, C. A.

Fimia, A.

Frietman, E. E. E.

F. Zhao, E. E. E. Frietman, X. Li, “Novel type of red-sensitive photopolymer system for optical storage,” in Advanced Optical Memories and Interfaces to Computer Storage, P. A. Mitkas, Z. U. Hason, eds., Proc. SPIE3468, 317–321 (1998).
[CrossRef]

Garcia, C.

C. Garcia, A. Fimia, I. Pascual, “Holographic behaviour of a photopolymer at high thicknesses and high monomer concentrations: mechanism of polymerisation,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

Haines, K. A.

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Jenkins, B. K.

Karpov, G. M.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

Kim, H. S.

H. S. Kim, C. S. Kyong, G. Y. Sung, C. H. Kwak, J. K. Lee, “Laser-induced polyacrylamide/PVA film with large diffraction index,” Ind. Eng. Chem. 5, 65–68 (1999).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Koudela, I.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Kwak, C. H.

H. S. Kim, C. S. Kyong, G. Y. Sung, C. H. Kwak, J. K. Lee, “Laser-induced polyacrylamide/PVA film with large diffraction index,” Ind. Eng. Chem. 5, 65–68 (1999).

Kwon, J. H.

Kyong, C. S.

H. S. Kim, C. S. Kyong, G. Y. Sung, C. H. Kwak, J. K. Lee, “Laser-induced polyacrylamide/PVA film with large diffraction index,” Ind. Eng. Chem. 5, 65–68 (1999).

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Lawrence, J. R.

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of a self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of a holographic recording material using an aerosol sealant,” J. Opt. 3, 20–25 (2001).

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Appl. Phys. 90, 3142–3148 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).

J. T. Sheridan, J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B (to be published).

Leclere, P.

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications (II),” J. Opt. (Paris) 23, 73–79 (1992).
[CrossRef]

Lee, J. K.

H. S. Kim, C. S. Kyong, G. Y. Sung, C. H. Kwak, J. K. Lee, “Laser-induced polyacrylamide/PVA film with large diffraction index,” Ind. Eng. Chem. 5, 65–68 (1999).

Lemeshko, V. V.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

Levy, D.

Li, X.

F. Zhao, E. E. E. Frietman, X. Li, “Novel type of red-sensitive photopolymer system for optical storage,” in Advanced Optical Memories and Interfaces to Computer Storage, P. A. Mitkas, Z. U. Hason, eds., Proc. SPIE3468, 317–321 (1998).
[CrossRef]

Lion, Y.

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications (II),” J. Opt. (Paris) 23, 73–79 (1992).
[CrossRef]

Lopez, N.

Lougnot, D. J.

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications (II),” J. Opt. (Paris) 23, 73–79 (1992).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” J. Opt. 1, 251–268 (1992).

Madrigal, R. F.

Mallavia, R.

Martin, S.

Mateos, F.

Miler, M.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Mouroulis, P.

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

G. Zhao, P. Mouroulis, “Extension of a diffusion model for holographic photopolymers,” J. Mod. Opt. 42, 2571–2573 (1994).
[CrossRef]

O’Neill, F. T.

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Appl. Phys. 90, 3142–3148 (2001).
[CrossRef]

J. T. Sheridan, M. Downey, F. T. O’Neill, “Diffusion-based model of holographic grating formation in photopolymers: generalised non-local material responses,” J. Opt. 3, 477–488 (2001).

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of a self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of a holographic recording material using an aerosol sealant,” J. Opt. 3, 20–25 (2001).

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B (to be published).

Obukhovsky, V. V.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

Pascual, I.

C. Garcia, A. Fimia, I. Pascual, “Holographic behaviour of a photopolymer at high thicknesses and high monomer concentrations: mechanism of polymerisation,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

Piazzolla, S.

Pineda, J.

Renotte, Y.

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications (II),” J. Opt. (Paris) 23, 73–79 (1992).
[CrossRef]

Sastre, R.

Schilling, M. L.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Sheridan, J. T.

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of a holographic recording material using an aerosol sealant,” J. Opt. 3, 20–25 (2001).

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of a self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
[CrossRef]

J. T. Sheridan, M. Downey, F. T. O’Neill, “Diffusion-based model of holographic grating formation in photopolymers: generalised non-local material responses,” J. Opt. 3, 477–488 (2001).

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Appl. Phys. 90, 3142–3148 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).

J. T. Sheridan, J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B (to be published).

Smirnova, T. N.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

Solymar, L.

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981).

Sung, G. Y.

H. S. Kim, C. S. Kyong, G. Y. Sung, C. H. Kwak, J. K. Lee, “Laser-induced polyacrylamide/PVA film with large diffraction index,” Ind. Eng. Chem. 5, 65–68 (1999).

Syms, R. R. A.

R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, UK, 1990).

Toal, V.

Turck, C.

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” J. Opt. 1, 251–268 (1992).

Ulibarrena, M.

Wolf, E.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, Oxford, U.K., 1980).

Wolfram, S.

S. Wolfram, The Mathematica Book, 3rd ed. (Cambridge U. Press, Cambridge, UK, 1996).

Woo, K. C.

Zhao, F.

F. Zhao, E. E. E. Frietman, X. Li, “Novel type of red-sensitive photopolymer system for optical storage,” in Advanced Optical Memories and Interfaces to Computer Storage, P. A. Mitkas, Z. U. Hason, eds., Proc. SPIE3468, 317–321 (1998).
[CrossRef]

Zhao, G.

G. Zhao, P. Mouroulis, “Extension of a diffusion model for holographic photopolymers,” J. Mod. Opt. 42, 2571–2573 (1994).
[CrossRef]

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

C. Garcia, A. Fimia, I. Pascual, “Holographic behaviour of a photopolymer at high thicknesses and high monomer concentrations: mechanism of polymerisation,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Ind. Eng. Chem. (1)

H. S. Kim, C. S. Kyong, G. Y. Sung, C. H. Kwak, J. K. Lee, “Laser-induced polyacrylamide/PVA film with large diffraction index,” Ind. Eng. Chem. 5, 65–68 (1999).

J. Appl. Phys. (2)

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Appl. Phys. 90, 3142–3148 (2001).
[CrossRef]

J. Mod. Opt. (3)

G. Zhao, P. Mouroulis, “Extension of a diffusion model for holographic photopolymers,” J. Mod. Opt. 42, 2571–2573 (1994).
[CrossRef]

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

J. Opt. (3)

J. T. Sheridan, M. Downey, F. T. O’Neill, “Diffusion-based model of holographic grating formation in photopolymers: generalised non-local material responses,” J. Opt. 3, 477–488 (2001).

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” J. Opt. 1, 251–268 (1992).

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of a holographic recording material using an aerosol sealant,” J. Opt. 3, 20–25 (2001).

J. Opt. (Paris) (1)

C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications (II),” J. Opt. (Paris) 23, 73–79 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

Opt. Eng. (1)

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of a self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
[CrossRef]

Optik (Stuttgart) (2)

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).

Other (8)

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B (to be published).

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, Oxford, U.K., 1980).

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981).

R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, UK, 1990).

S. Wolfram, The Mathematica Book, 3rd ed. (Cambridge U. Press, Cambridge, UK, 1996).

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2403, 2–13 (1993); see also http://www.dupont.com/holographics/tech/tech3.pdf .

P. Cheben, Institute for Microstructural Sciences, National Research Council of Canada (personal communication, 2001).

F. Zhao, E. E. E. Frietman, X. Li, “Novel type of red-sensitive photopolymer system for optical storage,” in Advanced Optical Memories and Interfaces to Computer Storage, P. A. Mitkas, Z. U. Hason, eds., Proc. SPIE3468, 317–321 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Six almost identically good fits to the data presented in Ref. 19 with model I and model II; see Table 1.

Fig. 2
Fig. 2

Two fits to the growth curve data discussed in Refs. 7 and 8 with both model I and model II; see Table 3. Spatial frequency is 1250 lines/mm.

Fig. 3
Fig. 3

Schematic 3-D representation of experimental data. Refractive-index modulations are a function of spatial frequency and exposure energy I 0 t.

Fig. 4
Fig. 4

Model I predicted refractive-index modulation as a function of spatial frequency and exposure energy I 0 t.

Fig. 5
Fig. 5

Model II predicted refractive-index modulation as a function of spatial frequency and exposure energy I 0 t.

Tables (3)

Tables Icon

Table 1 Papers Examined and the Resulting Predictions

Tables Icon

Table 2 Numerical Search and Predicted Parameter Fit Values from Ref. 19

Tables Icon

Table 3 Acrylamide-Based Material7,8: Predictions of Fits to Growth Curves and Three-Dimensional Data Curves

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Fx, t=F0[1+V cosKx],
Fx, t=F0[1+V cosKx]1/2.
Fx, t=F0i=0 fi cosiKx.
f0=22π, fm=42π-1m+1-1+4m2.
du0ξdξ=-f0u0ξ-f1u1ξ/2,
du1ξdξ=-Sf1u0ξ-Wu1ξ,
N1ξ=400SB2-W+f02R+exp-W+f0ξ2×LBsinhBξ2-R coshBξ2,
B=[W-f02+2f12S]1/2 and L=f0-RR+[-f12+f0+f22f0-R]S.
n1=CN1ξ.
η=sin2πn1dλB cos θB,

Metrics