Abstract

With the introduction of infrared (IR) retina sensors used as focal-plane arrays in large telescopes, astronomical observations are now frequently located in the near-IR part of the spectrum. In this region the upper atmosphere introduces in the 0.7–3-µm range an additional component due to the OH vibrational band emission that should be subtracted from the astronomical data. Observations of this upper-atmosphere emission performed at the Pic de Châteaurenard (altitude of 2989 m) are presented here. A panoramic image of the emission is constructed by use of a set of 48 images obtained with a CCD camera mounted on an alt-azimuthal platform. After a numerical filter is used to suppress the star images, the atmospheric emission shows two distinct sets of arches vanishing at two opposite points in the WNW and ESE azimuths. The emissive layer, caused by the ozone-hydrogen reaction, is thin and located at the altitude of 85 km. By use of these data, the perspective effect that produces the panoramic arches is inverted in introducing the concept of a virtual camera. The Van Rhijn effect and the refraction correction are taken into account. The three punctual transformations that use matrix algorithms are analyzed. The result is a satellite-type view of the emissive layer that appears as a disk having a radius of ∼1100 km. This disk is limited by the summit line of the Alps surrounding the Pic de Châteaurenard. The field of view covers a large part of Europe, the Mediterranean Sea, and North Africa. It shows an extended wave system. The images presented show that the upper-atmospheric layer is an efficient tracer of the dynamic processes at that level. Satellite-type views can be calculated without the drawback of looking downward from a satellite and measuring the numerous emissions from cities, oil fields, and other luminous sources.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Coulman, J. Vernin, A. Fuchs, “Optical seeing mechanism of formation of thin turbulent laminae in the atmosphere,” Appl. Opt. 34, 5461–5474 (1995).
    [CrossRef] [PubMed]
  2. A. Avila, A. Ziad, J. Borgnino, F. Martin, A. Agabi, A. Tokovinin, “Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997).
    [CrossRef]
  3. P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, G. Monnet, “Night-sky spectral atlas of OH emission lines in the near-infrared,” Astron. Astrophys. 354, 1134–1150 (2000).
  4. A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555–564 (1950).
    [CrossRef]
  5. G. Herzberg, “The atmospheres of the planets,” J. R. Astron. Soc. Can. 45, 100–123 (1951).
  6. G. Moreels, M. Hersé, “Photographic evidence of waves around the 85 km level,” Planet. Space Sci. 25, 265–273 (1977).
    [CrossRef]
  7. M. Kubota, M. Ishii, K. Shiokawa, M. K. Ejiri, T. Ogawa, “Height measurements of nightglow structures observed by all-sky imagers,” Adv. Space Res. 24, 593–596 (1999).
    [CrossRef]
  8. M. Hersé, G. Moreels, J. Clairemidi, “Waves in the OH emissive layer: photogrammetry and topography,” Appl. Opt. 19, 355–362 (1980).
    [CrossRef] [PubMed]
  9. A. Danjon, Astronomie Générale—Astronomie Sphérique et Éléments de Mécanique Céleste (J. & R. Sennac, Paris, 1959), pp. 143–162.
  10. J. W. Chamberlain, Physics of the Aurora and Airglow (Academic, New York, 1961), pp. 486–487.
  11. R. Haralick, L. Watson, “A facet model for image data,” Comput. Graph. Image Process. 15, 113–129 (1981).
    [CrossRef]
  12. R. Y. Tsaï, “A versatile camera calibration technique for high-accuracy 3D metrology using on-the-shelf tv cameras and lenses,” IEEE J Robotics Autom. RA-3, 323–344 (1987).
    [CrossRef]
  13. J.-P. Cocquerez, S. Philipp, Analyse d’Images: Filtrage et Segmentation (Masson, Paris, 1993).
  14. D. Pautet, “Etude par imagerie à faible niveau dans le proche infrarouge d’une émission de la haute atmosphère,” Thèse de Doctorat, Université de Franche-Comté, Besançon, France (2000).
  15. D. Pautet, G. Moreels, P. Rousselot, C. Reylé, J. Clairemidi, D. C. Boice, “Evidence for a 2200-km extended wave system at the mesopause level,” Adv. Space Res. 27, 1195–1200 (2001).
    [CrossRef]
  16. M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short-period waves imaged in the OI(555.7 nm), Na(589.2 nm) and near-infrared OH and O2 (0, 1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
    [CrossRef]
  17. M.-L. Chanin, A. Hauchecorne, “Lidar observation of gravity and tidal waves in the stratosphere and mesosphere,” J. Geophys. Res. 86, 9715–9721 (1981).
    [CrossRef]
  18. P. Keckhut, A. Hauchecorne, M.-L. Chanin, “Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes,” J. Geophys. Res. 100, 18887–18897 (1995).
    [CrossRef]

2001 (1)

D. Pautet, G. Moreels, P. Rousselot, C. Reylé, J. Clairemidi, D. C. Boice, “Evidence for a 2200-km extended wave system at the mesopause level,” Adv. Space Res. 27, 1195–1200 (2001).
[CrossRef]

2000 (1)

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, G. Monnet, “Night-sky spectral atlas of OH emission lines in the near-infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

1999 (1)

M. Kubota, M. Ishii, K. Shiokawa, M. K. Ejiri, T. Ogawa, “Height measurements of nightglow structures observed by all-sky imagers,” Adv. Space Res. 24, 593–596 (1999).
[CrossRef]

1997 (1)

1995 (3)

P. Keckhut, A. Hauchecorne, M.-L. Chanin, “Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes,” J. Geophys. Res. 100, 18887–18897 (1995).
[CrossRef]

C. E. Coulman, J. Vernin, A. Fuchs, “Optical seeing mechanism of formation of thin turbulent laminae in the atmosphere,” Appl. Opt. 34, 5461–5474 (1995).
[CrossRef] [PubMed]

M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short-period waves imaged in the OI(555.7 nm), Na(589.2 nm) and near-infrared OH and O2 (0, 1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
[CrossRef]

1987 (1)

R. Y. Tsaï, “A versatile camera calibration technique for high-accuracy 3D metrology using on-the-shelf tv cameras and lenses,” IEEE J Robotics Autom. RA-3, 323–344 (1987).
[CrossRef]

1981 (2)

M.-L. Chanin, A. Hauchecorne, “Lidar observation of gravity and tidal waves in the stratosphere and mesosphere,” J. Geophys. Res. 86, 9715–9721 (1981).
[CrossRef]

R. Haralick, L. Watson, “A facet model for image data,” Comput. Graph. Image Process. 15, 113–129 (1981).
[CrossRef]

1980 (1)

1977 (1)

G. Moreels, M. Hersé, “Photographic evidence of waves around the 85 km level,” Planet. Space Sci. 25, 265–273 (1977).
[CrossRef]

1951 (1)

G. Herzberg, “The atmospheres of the planets,” J. R. Astron. Soc. Can. 45, 100–123 (1951).

1950 (1)

A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555–564 (1950).
[CrossRef]

Agabi, A.

Avila, A.

Bishop, M. B.

M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short-period waves imaged in the OI(555.7 nm), Na(589.2 nm) and near-infrared OH and O2 (0, 1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
[CrossRef]

Boice, D. C.

D. Pautet, G. Moreels, P. Rousselot, C. Reylé, J. Clairemidi, D. C. Boice, “Evidence for a 2200-km extended wave system at the mesopause level,” Adv. Space Res. 27, 1195–1200 (2001).
[CrossRef]

Borgnino, J.

Chamberlain, J. W.

J. W. Chamberlain, Physics of the Aurora and Airglow (Academic, New York, 1961), pp. 486–487.

Chanin, M.-L.

P. Keckhut, A. Hauchecorne, M.-L. Chanin, “Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes,” J. Geophys. Res. 100, 18887–18897 (1995).
[CrossRef]

M.-L. Chanin, A. Hauchecorne, “Lidar observation of gravity and tidal waves in the stratosphere and mesosphere,” J. Geophys. Res. 86, 9715–9721 (1981).
[CrossRef]

Clairemidi, J.

D. Pautet, G. Moreels, P. Rousselot, C. Reylé, J. Clairemidi, D. C. Boice, “Evidence for a 2200-km extended wave system at the mesopause level,” Adv. Space Res. 27, 1195–1200 (2001).
[CrossRef]

M. Hersé, G. Moreels, J. Clairemidi, “Waves in the OH emissive layer: photogrammetry and topography,” Appl. Opt. 19, 355–362 (1980).
[CrossRef] [PubMed]

Cocquerez, J.-P.

J.-P. Cocquerez, S. Philipp, Analyse d’Images: Filtrage et Segmentation (Masson, Paris, 1993).

Coulman, C. E.

Cuby, J.-G.

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, G. Monnet, “Night-sky spectral atlas of OH emission lines in the near-infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Danjon, A.

A. Danjon, Astronomie Générale—Astronomie Sphérique et Éléments de Mécanique Céleste (J. & R. Sennac, Paris, 1959), pp. 143–162.

Ejiri, M. K.

M. Kubota, M. Ishii, K. Shiokawa, M. K. Ejiri, T. Ogawa, “Height measurements of nightglow structures observed by all-sky imagers,” Adv. Space Res. 24, 593–596 (1999).
[CrossRef]

Fuchs, A.

Haralick, R.

R. Haralick, L. Watson, “A facet model for image data,” Comput. Graph. Image Process. 15, 113–129 (1981).
[CrossRef]

Hauchecorne, A.

P. Keckhut, A. Hauchecorne, M.-L. Chanin, “Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes,” J. Geophys. Res. 100, 18887–18897 (1995).
[CrossRef]

M.-L. Chanin, A. Hauchecorne, “Lidar observation of gravity and tidal waves in the stratosphere and mesosphere,” J. Geophys. Res. 86, 9715–9721 (1981).
[CrossRef]

Hersé, M.

M. Hersé, G. Moreels, J. Clairemidi, “Waves in the OH emissive layer: photogrammetry and topography,” Appl. Opt. 19, 355–362 (1980).
[CrossRef] [PubMed]

G. Moreels, M. Hersé, “Photographic evidence of waves around the 85 km level,” Planet. Space Sci. 25, 265–273 (1977).
[CrossRef]

Herzberg, G.

G. Herzberg, “The atmospheres of the planets,” J. R. Astron. Soc. Can. 45, 100–123 (1951).

Ishii, M.

M. Kubota, M. Ishii, K. Shiokawa, M. K. Ejiri, T. Ogawa, “Height measurements of nightglow structures observed by all-sky imagers,” Adv. Space Res. 24, 593–596 (1999).
[CrossRef]

Keckhut, P.

P. Keckhut, A. Hauchecorne, M.-L. Chanin, “Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes,” J. Geophys. Res. 100, 18887–18897 (1995).
[CrossRef]

Kubota, M.

M. Kubota, M. Ishii, K. Shiokawa, M. K. Ejiri, T. Ogawa, “Height measurements of nightglow structures observed by all-sky imagers,” Adv. Space Res. 24, 593–596 (1999).
[CrossRef]

Lidman, C.

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, G. Monnet, “Night-sky spectral atlas of OH emission lines in the near-infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Martin, F.

Meinel, A. B.

A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555–564 (1950).
[CrossRef]

Monnet, G.

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, G. Monnet, “Night-sky spectral atlas of OH emission lines in the near-infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Moreels, G.

D. Pautet, G. Moreels, P. Rousselot, C. Reylé, J. Clairemidi, D. C. Boice, “Evidence for a 2200-km extended wave system at the mesopause level,” Adv. Space Res. 27, 1195–1200 (2001).
[CrossRef]

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, G. Monnet, “Night-sky spectral atlas of OH emission lines in the near-infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

M. Hersé, G. Moreels, J. Clairemidi, “Waves in the OH emissive layer: photogrammetry and topography,” Appl. Opt. 19, 355–362 (1980).
[CrossRef] [PubMed]

G. Moreels, M. Hersé, “Photographic evidence of waves around the 85 km level,” Planet. Space Sci. 25, 265–273 (1977).
[CrossRef]

Ogawa, T.

M. Kubota, M. Ishii, K. Shiokawa, M. K. Ejiri, T. Ogawa, “Height measurements of nightglow structures observed by all-sky imagers,” Adv. Space Res. 24, 593–596 (1999).
[CrossRef]

Pautet, D.

D. Pautet, G. Moreels, P. Rousselot, C. Reylé, J. Clairemidi, D. C. Boice, “Evidence for a 2200-km extended wave system at the mesopause level,” Adv. Space Res. 27, 1195–1200 (2001).
[CrossRef]

D. Pautet, “Etude par imagerie à faible niveau dans le proche infrarouge d’une émission de la haute atmosphère,” Thèse de Doctorat, Université de Franche-Comté, Besançon, France (2000).

Philipp, S.

J.-P. Cocquerez, S. Philipp, Analyse d’Images: Filtrage et Segmentation (Masson, Paris, 1993).

Reylé, C.

D. Pautet, G. Moreels, P. Rousselot, C. Reylé, J. Clairemidi, D. C. Boice, “Evidence for a 2200-km extended wave system at the mesopause level,” Adv. Space Res. 27, 1195–1200 (2001).
[CrossRef]

Rousselot, P.

D. Pautet, G. Moreels, P. Rousselot, C. Reylé, J. Clairemidi, D. C. Boice, “Evidence for a 2200-km extended wave system at the mesopause level,” Adv. Space Res. 27, 1195–1200 (2001).
[CrossRef]

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, G. Monnet, “Night-sky spectral atlas of OH emission lines in the near-infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Shiokawa, K.

M. Kubota, M. Ishii, K. Shiokawa, M. K. Ejiri, T. Ogawa, “Height measurements of nightglow structures observed by all-sky imagers,” Adv. Space Res. 24, 593–596 (1999).
[CrossRef]

Taylor, M. J.

M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short-period waves imaged in the OI(555.7 nm), Na(589.2 nm) and near-infrared OH and O2 (0, 1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
[CrossRef]

Taylor, V.

M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short-period waves imaged in the OI(555.7 nm), Na(589.2 nm) and near-infrared OH and O2 (0, 1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
[CrossRef]

Tokovinin, A.

Tsaï, R. Y.

R. Y. Tsaï, “A versatile camera calibration technique for high-accuracy 3D metrology using on-the-shelf tv cameras and lenses,” IEEE J Robotics Autom. RA-3, 323–344 (1987).
[CrossRef]

Vernin, J.

Watson, L.

R. Haralick, L. Watson, “A facet model for image data,” Comput. Graph. Image Process. 15, 113–129 (1981).
[CrossRef]

Ziad, A.

Adv. Space Res. (2)

D. Pautet, G. Moreels, P. Rousselot, C. Reylé, J. Clairemidi, D. C. Boice, “Evidence for a 2200-km extended wave system at the mesopause level,” Adv. Space Res. 27, 1195–1200 (2001).
[CrossRef]

M. Kubota, M. Ishii, K. Shiokawa, M. K. Ejiri, T. Ogawa, “Height measurements of nightglow structures observed by all-sky imagers,” Adv. Space Res. 24, 593–596 (1999).
[CrossRef]

Appl. Opt. (2)

Astron. Astrophys. (1)

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, G. Monnet, “Night-sky spectral atlas of OH emission lines in the near-infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Astrophys. J. (1)

A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555–564 (1950).
[CrossRef]

Comput. Graph. Image Process. (1)

R. Haralick, L. Watson, “A facet model for image data,” Comput. Graph. Image Process. 15, 113–129 (1981).
[CrossRef]

Geophys. Res. Lett. (1)

M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short-period waves imaged in the OI(555.7 nm), Na(589.2 nm) and near-infrared OH and O2 (0, 1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
[CrossRef]

IEEE J Robotics Autom. (1)

R. Y. Tsaï, “A versatile camera calibration technique for high-accuracy 3D metrology using on-the-shelf tv cameras and lenses,” IEEE J Robotics Autom. RA-3, 323–344 (1987).
[CrossRef]

J. Geophys. Res. (2)

M.-L. Chanin, A. Hauchecorne, “Lidar observation of gravity and tidal waves in the stratosphere and mesosphere,” J. Geophys. Res. 86, 9715–9721 (1981).
[CrossRef]

P. Keckhut, A. Hauchecorne, M.-L. Chanin, “Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes,” J. Geophys. Res. 100, 18887–18897 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. R. Astron. Soc. Can. (1)

G. Herzberg, “The atmospheres of the planets,” J. R. Astron. Soc. Can. 45, 100–123 (1951).

Planet. Space Sci. (1)

G. Moreels, M. Hersé, “Photographic evidence of waves around the 85 km level,” Planet. Space Sci. 25, 265–273 (1977).
[CrossRef]

Other (4)

A. Danjon, Astronomie Générale—Astronomie Sphérique et Éléments de Mécanique Céleste (J. & R. Sennac, Paris, 1959), pp. 143–162.

J. W. Chamberlain, Physics of the Aurora and Airglow (Academic, New York, 1961), pp. 486–487.

J.-P. Cocquerez, S. Philipp, Analyse d’Images: Filtrage et Segmentation (Masson, Paris, 1993).

D. Pautet, “Etude par imagerie à faible niveau dans le proche infrarouge d’une émission de la haute atmosphère,” Thèse de Doctorat, Université de Franche-Comté, Besançon, France (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Bandpasses of the visible BG39 and IR RG780 filters used with the CCD camera. The quantum efficiency of the CCD and a synthetic spectrum of the OH emission are also plotted.

Fig. 2
Fig. 2

Images of the sky taken during the night of 19 to 20 October 1998 at the Observatoire de Haute-Provence (altitude of 665 m). The field of view is 19.7° × 19.7°. The upper image is taken in the visible with a BG39 filter. The lower image is taken in the IR with a RG780 filter. The stripes are due to the OH emission originating from the mesopause layer.

Fig. 3
Fig. 3

Panorama display of the sky in the near IR taken at the Pic de Châteaurenard (altitude of 2989 m) on 30–31 July 1998 from 23 h, 2 min to 1 h, 37 min UT. The Milky Way appears as a vertical festooned stripe. The atmospheric emission shows two series of arches converging at two opposite vanishing points on the horizon.

Fig. 4
Fig. 4

Summary diagram of the satellite-type projection.

Fig. 5
Fig. 5

Different frames used for the projection.

Fig. 6
Fig. 6

Intensification as a result of the Van Rhijn effect.

Fig. 7
Fig. 7

Projection of the real image pixels on the virtual camera plane containing a matrix of pixels.

Fig. 8
Fig. 8

Image of the nocturnal sky in the near IR—Crêt Monniot (Doubs). Presence of luminous additional objects (stars and plane) or dark objects (horizon and cross).

Fig. 9
Fig. 9

(a) Preprocessed image obtained at the Crêt Monniot on 18–19 May 1998. The preprocessing step consists of dark current substraction and division by the flat field. (b) The filtered image deduced from image (a). Filtering is used to remove the star images.

Fig. 10
Fig. 10

Projection of the panorama of the nocturnal sky realized during the night of 29 to 30 July 1998 at the Pic de Châteaurenard. The corresponding geographic map has been superimposed. The white stripe in the southwest is the Milky Way. The white zone around the center corresponds to the vertical direction of the site that was not observed.

Fig. 11
Fig. 11

Same image as in Fig. 9 but filtered to enhance the wave crests.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

H+O3OH*+O2,
xr=MicurMic=1αu0-u0αu01αv-v0αv00f001.
xr=MprxrMpr=Ct0000Ct0000Ct00001,
Ct=-RHzr sin αA-yr cos αA+RH2zr sin αA-yr cos αA2+xr2+yr2+zr2RH2-Rh21/2/xr2+yr2+zr2,
xv=MrvxrMrv=-cos θsin α sin θ-cos α sin θ0-sin θsin α cos θcos α cos θ00cos α-sin αL0001.
xv=MvpxvMvp=100001000000001/f0.
uv=MvixvMvi=ku00u00kv0v00001.
L=f-ymax+f zmaxYmax,
R=α01-α022a1/2 sin e0eX2×π2-π2erfX-ln ρh,
Ie=I0Vh, e,
Vh, e=11-RT2RT+h2sin2 e1/2.
fr, c=k00+k10r+k01c+k20r2+k11rc+k02c2+k30r3+k21r2c+k12rc2+k03c3.

Metrics