Abstract

We describe an original microscope for high-resolution optical coherence tomography applications. Our system is based on a Linnik interference microscope with high-numerical-aperture objectives. Lock-in detection of the interference signal is achieved in parallel on a CCD by use of a photoelastic birefringence modulator and full-field stroboscopic illumination with an infrared LED. Transverse cross-section (en-face, or XY) images can be obtained in real time with better than 1-µm axial (Z) resolution and 0.5-µm transverse (XY) resolution. A sensitivity of ∼80 dB is reached at a 1-image/s acquisition rate, which allows tomography in scattering media such as biological tissues.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  2. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  3. J. Pawley, ed., The Handbook of Confocal Microscopy, 2nd ed. (Plenum, New York, 1995), p. 445.
  4. K. Creath, “Phase-measurements interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, New York, 1988), Vol. XXVI, pp. 349–393.
    [CrossRef]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  6. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
    [CrossRef] [PubMed]
  7. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
    [CrossRef] [PubMed]
  8. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
    [CrossRef] [PubMed]
  9. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–593 (1994).
    [CrossRef] [PubMed]
  10. M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996).
    [CrossRef]
  11. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [CrossRef] [PubMed]
  12. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomography imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
    [CrossRef] [PubMed]
  13. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo optical coherence tomography cellular imaging,” Nature Med. 4, 861–867 (1998).
    [CrossRef]
  14. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  15. E. Beaurepaire, L. Moreaux, F. Amblard, J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24, 969–971 (1999).
    [CrossRef]
  16. A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, D. A. Jackson, “Coherence imaging by use of a Newton rings sampling function,” Opt. Lett. 21, 1789–1791 (1996).
    [CrossRef] [PubMed]
  17. G. S. Kino, S. C. Chim, “Mirau correlation microscope,”Appl. Opt. 29, 3775–3783 (1990).
    [CrossRef] [PubMed]
  18. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
    [CrossRef]
  19. A. Dubois, J. Selb, L. Vabre, A. C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2323–2331 (2000).
    [CrossRef]
  20. J. C. Canit, J. Badoz, “New design for a photoelastic modulator,” Appl. Opt. 22, 592–594 (1983).
    [CrossRef] [PubMed]
  21. A. C. Boccara, F. Charbonnier, D. Fournier, P. Gleyzes, “Procédé et dispositif de détection synchrone multicanal,” French patentFR90.092255 (08255, June29, 1990) and international extensions.
  22. A. Dubois, “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” J. Opt. Soc. Am. A 18, 1972–1979 (2001).
    [CrossRef]
  23. J. W. Goodman, Statistical Optics (Wiley, New York, 1984), Chap. 5.
  24. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39, 1194–1201 (2000).
    [CrossRef]
  25. K. K. Bizheva, A. M. Siegel, A. K. K. Dunn, D. A. Boas, “Detection of multiply scattered light in optical coherence microscopy,” in Waves and Imaging through Complex Media, P. Sebbah, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 277–298.
    [CrossRef]
  26. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1993).
  27. A. Dubois, A. C. Boccara, M. Lebec, “Real-time reflectivity and topography imagery of depth-resolved microscopic surfaces,” Opt. Lett. 24, 309–311 (1999).
    [CrossRef]

2001

2000

1999

1998

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo optical coherence tomography cellular imaging,” Nature Med. 4, 861–867 (1998).
[CrossRef]

1997

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

1996

1995

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomography imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
[CrossRef] [PubMed]

1994

1992

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990

1983

Amblard, F.

Badoz, J.

Beaurepaire, E.

Berns, M. W.

Bizheva, K. K.

K. K. Bizheva, A. M. Siegel, A. K. K. Dunn, D. A. Boas, “Detection of multiply scattered light in optical coherence microscopy,” in Waves and Imaging through Complex Media, P. Sebbah, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 277–298.
[CrossRef]

Boas, D. A.

K. K. Bizheva, A. M. Siegel, A. K. K. Dunn, D. A. Boas, “Detection of multiply scattered light in optical coherence microscopy,” in Waves and Imaging through Complex Media, P. Sebbah, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 277–298.
[CrossRef]

Boccara, A. C.

A. Dubois, J. Selb, L. Vabre, A. C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2323–2331 (2000).
[CrossRef]

A. Dubois, A. C. Boccara, M. Lebec, “Real-time reflectivity and topography imagery of depth-resolved microscopic surfaces,” Opt. Lett. 24, 309–311 (1999).
[CrossRef]

A. C. Boccara, F. Charbonnier, D. Fournier, P. Gleyzes, “Procédé et dispositif de détection synchrone multicanal,” French patentFR90.092255 (08255, June29, 1990) and international extensions.

Bopart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Boppart, S. A.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo optical coherence tomography cellular imaging,” Nature Med. 4, 861–867 (1998).
[CrossRef]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomography imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
[CrossRef] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1993).

Bouma, B.

Bouma, B. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo optical coherence tomography cellular imaging,” Nature Med. 4, 861–867 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
[CrossRef] [PubMed]

Brezinski, M. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo optical coherence tomography cellular imaging,” Nature Med. 4, 861–867 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomography imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
[CrossRef] [PubMed]

Canit, J. C.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Charbonnier, F.

A. C. Boccara, F. Charbonnier, D. Fournier, P. Gleyzes, “Procédé et dispositif de détection synchrone multicanal,” French patentFR90.092255 (08255, June29, 1990) and international extensions.

Chim, S. C.

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Coleno, M.

Creath, K.

K. Creath, “Phase-measurements interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, New York, 1988), Vol. XXVI, pp. 349–393.
[CrossRef]

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Dobre, G. M.

Drexler, W.

Dubois, A.

Dunn, A. K.

Dunn, A. K. K.

K. K. Bizheva, A. M. Siegel, A. K. K. Dunn, D. A. Boas, “Detection of multiply scattered light in optical coherence microscopy,” in Waves and Imaging through Complex Media, P. Sebbah, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 277–298.
[CrossRef]

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fournier, D.

A. C. Boccara, F. Charbonnier, D. Fournier, P. Gleyzes, “Procédé et dispositif de détection synchrone multicanal,” French patentFR90.092255 (08255, June29, 1990) and international extensions.

Fujimoto, J. G.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo optical coherence tomography cellular imaging,” Nature Med. 4, 861–867 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomography imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–593 (1994).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gleyzes, P.

A. C. Boccara, F. Charbonnier, D. Fournier, P. Gleyzes, “Procédé et dispositif de détection synchrone multicanal,” French patentFR90.092255 (08255, June29, 1990) and international extensions.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1984), Chap. 5.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomography imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–593 (1994).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

Jackson, D. A.

Kärtner, F. X.

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Kempe, M.

Kino, G. S.

Lebec, M.

Li, X. D.

Lin, C. P.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Mertz, J.

Moreaux, L.

Morgner, U.

Owen, G. M.

Pitris, C.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo optical coherence tomography cellular imaging,” Nature Med. 4, 861–867 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Podoleanu, A. Gh.

Puliafito, C. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rudolph, W.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Selb, J.

A. Dubois, J. Selb, L. Vabre, A. C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2323–2331 (2000).
[CrossRef]

Sheppard, C. J. R.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Siegel, A. M.

K. K. Bizheva, A. M. Siegel, A. K. K. Dunn, D. A. Boas, “Detection of multiply scattered light in optical coherence microscopy,” in Waves and Imaging through Complex Media, P. Sebbah, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 277–298.
[CrossRef]

Southern, J. F.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo optical coherence tomography cellular imaging,” Nature Med. 4, 861–867 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–593 (1994).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomography imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
[CrossRef] [PubMed]

Tromberg, B. J.

Vabre, L.

A. Dubois, J. Selb, L. Vabre, A. C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2323–2331 (2000).
[CrossRef]

Wallace, V. P.

Webb, D. J.

Welsch, E.

Wilson, T.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

T. Wilson, Confocal Microscopy (Academic, London, 1990).

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1993).

Appl. Opt.

J. Biomed. Opt.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nature Med.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo optical coherence tomography cellular imaging,” Nature Med. 4, 861–867 (1998).
[CrossRef]

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Bopart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Other

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

T. Wilson, Confocal Microscopy (Academic, London, 1990).

J. Pawley, ed., The Handbook of Confocal Microscopy, 2nd ed. (Plenum, New York, 1995), p. 445.

K. Creath, “Phase-measurements interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, New York, 1988), Vol. XXVI, pp. 349–393.
[CrossRef]

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

A. C. Boccara, F. Charbonnier, D. Fournier, P. Gleyzes, “Procédé et dispositif de détection synchrone multicanal,” French patentFR90.092255 (08255, June29, 1990) and international extensions.

J. W. Goodman, Statistical Optics (Wiley, New York, 1984), Chap. 5.

K. K. Bizheva, A. M. Siegel, A. K. K. Dunn, D. A. Boas, “Detection of multiply scattered light in optical coherence microscopy,” in Waves and Imaging through Complex Media, P. Sebbah, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 277–298.
[CrossRef]

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup. In this schematic representation, only one point of the object is imaged on the CCD camera array. In reality, wide-field illumination is used to acquire two-dimensional images in parallel without scanning.

Fig. 2
Fig. 2

Principle of image acquisition. Each frame Ep=1,2,3,4 results from the accumulation by the CCD of 250 (50 kHz/200 Hz) times the integration of the modulated signal I(t) over one quarter of the modulation period (achieved by stroboscopic illumination). After the acquisition of one frame, the stroboscopic illumination is shifted by one quarter of the modulation period. Series of four frames, E1, E2, E3, E4, are acquired continuously and accumulated in four buffers. The tomographic image is calculated in real time by combination of these four frames [see Eq. (6)].

Fig. 3
Fig. 3

Theoretical axial resolution [from Eq. (13)] as a function of the NA in the case of water-immersion objectives (n = 1.33). The source has a Gaussian spectrum centered at λ = 840 nm and a coherence length of 20 µm.

Fig. 4
Fig. 4

Experimental and theoretical axial responses for a λ = 840 nm source with 20-µm coherence length and NAs in air of 0.15 and 0.85.

Fig. 5
Fig. 5

Edge response with NA = 0.15 and NA = 0.85. The theoretical calculations are the convolution of a perfect step with the squared Airy function h2(u) [see Eq. (19)].

Fig. 6
Fig. 6

Metallic grid observed through six mean free paths (single path) of a scattering suspension of 300 nm polystyrene beads by (a) coherent detection and (b) direct detection. Acquisition time, 1 s; field of view, 350 µm × 350 µm.

Fig. 7
Fig. 7

Succulent plant leaf observed at different depths. Field of view, 370 µm × 370 µm; water-immersion objectives with 0.3 NA; acquisition time, 1 s; logarithmic scale; contrast inverted.

Fig. 8
Fig. 8

High-resolution (0.7 µm × 2.8 µm, lateral × axial) images of an onion epithelium with 0.5-NA dry objectives. Field of view, 160 µm × 160 µm; acquisition time, 0.5 s; logarithmic scale.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

Ix, y=I¯x, y+Ax, ycos ϕx, y,
Ix, y, t=I¯x, y+Ax, ycosϕx, y+ψ sin2πft+θ,
Epx, y=NM p-1T/4pT/4 Ix, y, tdt, p=1, 2, 3, 4.
Σs=-E1+E2+E3-E4=4NMT/πΓsA sin ϕ,
Σc=-E1+E2+E3-E4=4NMT/πΓsA sin ϕ,
Γs=n=0+-1nJ2n+1ψ2n+1sin2n+1θ,
Γc=n=0+J2n+1ψ2n+1sin2n+1θ,
S=Σs2+Σc2=4NMTΓ/π2A2.
Iz=I¯+AFsz,
Fsz=0 Skcos2kzdk,
Fsz=Fs0cos2k0zVsz,
Vsz=exp-Δk2z24 ln2.
Δz=22 ln2Δk=2 ln2nπλ02Δλ=Lc2n2.
Iz=I¯+AFS,NAz,
FS,NAz=2sin2 θmax0 Sk0θmaxcos2kz cos θ×cos θ sin θ dθdk,
FNAz=2sin2 θmax0θmaxcos(2kz cos θcos θ sin θdθ.
FNAz=FNA0cos2αkzVNAz,
2α=1+cos θmax,
VNAz=sinkz1-cos θmaxkz(1-cos θmax.
Δz0.88πk1-cos θmax=0.44λn1-cos θmax.
hu=2J1uu2, u=2πλ r NA.
ν=0, ν2=Nξ,
S=Σs+Xs2+Σc+Xc2,
Xs=-ν1+ν2+ν3-ν4, Xc=-ν1+ν2-ν3+ν4.
SA=0=Xs2+Xc2=8Nξ.
SNR=Σs2+Σc2Xs2+Xc2.
ξmax/1+γ=I¯MT/4,
SNR=32Γγπ2Nξmax1+γγ221+γ Nξmax.
γ=2RrefRRref+R+2Rinc,
Rmin=Rref+2Rinc2NξmaxRref.

Metrics