Abstract

In the field of diffuse optical tomography (DOT), it is widely accepted that time-resolved (TR) measurement can provide the richest information on photon migration in a turbid medium, such as biological tissue. However, the currently available image reconstruction algorithms for TR DOT are based mostly on the cw component or some featured data types of original temporal profiles, which are related to the solution of a time-independent diffusion equation. Although this methodology can greatly simplify the reconstruction process, it suffers from low spatial resolution and poor quantitativeness owing to the limitation of effectively applicable data types. To improve image quality, it has been argued that exploiting the full TR data is essential. We propose implementation of a DOT algorithm by using full TR data and furthermore a variant algorithm with time slices of TR data to alleviate the computational complexity and enhance noise robustness. Compared with those algorithms where the featured data types are used, our evaluations on the spatial resolution and quantitativeness show that a significant improvement in imaging quality can be achieved when full TR data are used, which convinces the DOT community of the potential advantage of the TR domain over cw and frequency domains.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. B. Colak, D. G. Papaioannou, G. W. t’Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–219 (1997).
    [CrossRef] [PubMed]
  2. H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  3. M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite element for the forward and inverse models in optical tomography,” J. Math. Imaging Vision 3, 263–283 (1993).
    [CrossRef]
  4. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
    [CrossRef]
  5. S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
    [CrossRef]
  6. M. Schweiger, S. R. Arridge, “Application of temporal filters to time-resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
    [CrossRef] [PubMed]
  7. F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
    [CrossRef]
  8. F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).
    [CrossRef]
  9. E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
    [CrossRef]
  10. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
    [CrossRef]
  11. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
    [CrossRef]
  12. R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van de Zee, eds., Proc. SPIEIS11, 87–120 (1993).
  13. A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
    [CrossRef] [PubMed]
  14. R. Model, M. Orlt, M. Walzel, “Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data,” J. Opt. Soc. Am. A 14, 313–323 (1997).
    [CrossRef]
  15. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
    [CrossRef]
  16. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R42–R93 (1999).
    [CrossRef]
  17. W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).
  18. S. R. Arridge, M. Scheweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 24, 299–309 (1993).
    [CrossRef]
  19. J. D. Lambert, Computational Methods in Ordinary Differential Equations (Wiley, New York, 1973).
  20. G. T. Herman, Image Reconstruction from Projections: the Fundamentals of Algorithm of Computerized Tomography (Academic, New York, 1980).
  21. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Opt. Lett. 33, 6699–6701 (1994).
  22. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
    [CrossRef] [PubMed]
  23. F. Bevilacqua, D. Piguet, P. Marguet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: application to human brain,” Appl. Opt. 32, 574–579 (1993).
  24. S. R. Arridge, W. L. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
    [CrossRef]
  25. V. G. Romanov, S. He, “Some uniqueness theorems for mammography-related time-domain inverse problems for the diffusion equation,” Inverse Probl. 16, 447–459 (2000).
    [CrossRef]
  26. S. R. Arridge, M. Schweiger, “Gradient-based optimization scheme for optical tomography,” Opt. Exp. 2, 212–226 (1998).
    [CrossRef]
  27. B. W. Pogue, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4, 270–286 (1999), http://www.opticsexpress.org .
    [CrossRef]
  28. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
    [CrossRef] [PubMed]
  29. S. R. Arridge, “Photon measurement density functions. Part 1: Analytic forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  30. S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  31. J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).
    [CrossRef]

2000 (6)

E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

V. G. Romanov, S. He, “Some uniqueness theorems for mammography-related time-domain inverse problems for the diffusion equation,” Inverse Probl. 16, 447–459 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
[CrossRef]

1999 (7)

B. W. Pogue, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4, 270–286 (1999), http://www.opticsexpress.org .
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).
[CrossRef]

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R42–R93 (1999).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time-resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

1998 (2)

S. R. Arridge, W. L. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “Gradient-based optimization scheme for optical tomography,” Opt. Exp. 2, 212–226 (1998).
[CrossRef]

1997 (2)

1996 (1)

1995 (2)

1994 (1)

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Opt. Lett. 33, 6699–6701 (1994).

1993 (3)

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite element for the forward and inverse models in optical tomography,” J. Math. Imaging Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Scheweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 24, 299–309 (1993).
[CrossRef]

F. Bevilacqua, D. Piguet, P. Marguet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: application to human brain,” Appl. Opt. 32, 574–579 (1993).

1992 (1)

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Aronson, R.

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van de Zee, eds., Proc. SPIEIS11, 87–120 (1993).

Arridge, S. R.

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R42–R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time-resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

S. R. Arridge, W. L. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “Gradient-based optimization scheme for optical tomography,” Opt. Exp. 2, 212–226 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, “Photon measurement density functions. Part 1: Analytic forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite element for the forward and inverse models in optical tomography,” J. Math. Imaging Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Scheweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 24, 299–309 (1993).
[CrossRef]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
[CrossRef]

Barbour, R. L.

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van de Zee, eds., Proc. SPIEIS11, 87–120 (1993).

Bevilacqua, F.

Boas, D. A.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Brooks, D. H.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Chang, J. H.

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van de Zee, eds., Proc. SPIEIS11, 87–120 (1993).

Colak, S. B.

Cope, M.

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Dehghani, H.

E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

Delpy, D. T.

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

S. R. Arridge, M. Scheweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 24, 299–309 (1993).
[CrossRef]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite element for the forward and inverse models in optical tomography,” J. Math. Imaging Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
[CrossRef]

Depeursinge, C.

DiMarzio, C. A.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Downar, T. J.

Eda, H.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Egan, W. G.

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

Gao, F.

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Gaudette, R. J.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Gaudette, T.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Graber, H. L.

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van de Zee, eds., Proc. SPIEIS11, 87–120 (1993).

Gross, J. D.

Hanson, K. M.

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

He, S.

V. G. Romanov, S. He, “Some uniqueness theorems for mammography-related time-domain inverse problems for the diffusion equation,” Inverse Probl. 16, 447–459 (2000).
[CrossRef]

Hebden, J. C.

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Herman, G. T.

G. T. Herman, Image Reconstruction from Projections: the Fundamentals of Algorithm of Computerized Tomography (Academic, New York, 1980).

Hielscher, A. H.

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

Hilgeman, T. W.

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).

Hillman, E. M. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

Hiraoka, M.

S. R. Arridge, M. Scheweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 24, 299–309 (1993).
[CrossRef]

Ito, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Jiang, H.

Kilmer, M. E.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Klose, A. D.

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

Kolzer, J.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Opt. Lett. 33, 6699–6701 (1994).

Lambert, J. D.

J. D. Lambert, Computational Methods in Ordinary Differential Equations (Wiley, New York, 1973).

Lionheart, W. L. B.

Marguet, P.

McBride, T. O.

Melissen, J. B. M.

Millane, R. P.

Miller, E. L.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Mitic, G.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Opt. Lett. 33, 6699–6701 (1994).

Model, R.

Oda, I.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Oda, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Oikawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Onodera, Y.

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Orlt, M.

Osterberg, U. L.

Otto, J.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Opt. Lett. 33, 6699–6701 (1994).

Paasschens, J. C. J.

Papaioannou, D. G.

Paulsen, K. D.

Piguet, D.

Plies, E.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Opt. Lett. 33, 6699–6701 (1994).

Pogue, B. W.

Poulet, P.

Prewitt, J.

Romanov, V. G.

V. G. Romanov, S. He, “Some uniqueness theorems for mammography-related time-domain inverse problems for the diffusion equation,” Inverse Probl. 16, 447–459 (2000).
[CrossRef]

Sassaroli, A.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Scheweiger, M.

S. R. Arridge, M. Scheweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 24, 299–309 (1993).
[CrossRef]

Schmidt, F. E. R.

E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

Schomberg, H.

Schweiger, M.

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time-resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Gradient-based optimization scheme for optical tomography,” Opt. Exp. 2, 212–226 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite element for the forward and inverse models in optical tomography,” J. Math. Imaging Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
[CrossRef]

Solkner, G.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Opt. Lett. 33, 6699–6701 (1994).

t’Hooft, G. W.

Tamura, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tanikawa, Y.

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Tromberg, B. J.

Tsuchiya, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tsunazawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

van Asten, N. A. A. J.

van der Mark, M. B.

Wada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Walzel, M.

Wang, Y.

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van de Zee, eds., Proc. SPIEIS11, 87–120 (1993).

Webb, K. J.

Yamada, Y.

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Yamashita, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Ye, J. C.

Zhao, H.

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

Zinth, W.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Opt. Lett. 33, 6699–6701 (1994).

Appl. Opt. (7)

IEEE Trans. Med. Imaging (1)

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

Inverse Probl. (2)

V. G. Romanov, S. He, “Some uniqueness theorems for mammography-related time-domain inverse problems for the diffusion equation,” Inverse Probl. 16, 447–459 (2000).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R42–R93 (1999).
[CrossRef]

J. Math. Imaging Vision (1)

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite element for the forward and inverse models in optical tomography,” J. Math. Imaging Vision 3, 263–283 (1993).
[CrossRef]

J. Opt. Soc. Am. A (3)

Med. Phys. (1)

S. R. Arridge, M. Scheweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 24, 299–309 (1993).
[CrossRef]

Opt. Exp. (1)

S. R. Arridge, M. Schweiger, “Gradient-based optimization scheme for optical tomography,” Opt. Exp. 2, 212–226 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

S. R. Arridge, W. L. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
[CrossRef]

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Opt. Lett. 33, 6699–6701 (1994).

Phys. Med. Biol. (3)

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time-resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. R. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Other (6)

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van de Zee, eds., Proc. SPIEIS11, 87–120 (1993).

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).
[CrossRef]

J. D. Lambert, Computational Methods in Ordinary Differential Equations (Wiley, New York, 1973).

G. T. Herman, Image Reconstruction from Projections: the Fundamentals of Algorithm of Computerized Tomography (Academic, New York, 1980).

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

FEM mesh for the 2-D circular domain.

Fig. 2
Fig. 2

(a) Geometric sketch of the circular phantom for absorption-only reconstruction; (b) time-resolved reemissions at a source-opposite position calculated for the corresponding background medium at five different time resolutions, Δt = 10, 20, 40, 80, and 160 ps.

Fig. 3
Fig. 3

(a) Reconstructed images; (b) their X profiles where the TR algorithm is used for a target CCS of d = 16 mm and μa(i) = 0.02 mm-1 (i = 1, 2), compared with those obtained with feature-data algorithms where E, 〈t〉, 〈t〉 & c2 and 〈t〉 & c2 & c3 are used; (c) relative error norms as functions of the iteration number with the stopping points of the iterations marked individually.

Fig. 4
Fig. 4

(a) Spatial resolution measure Rs for both the TR and the featured-data algorithms as a function of the target CCS; (b) gray-scale-resolution measure Rg for both the TR and the featured-data algorithms as a function of the TDF.

Fig. 5
Fig. 5

Reconstructed images and the relevant measurement errors for μa(1) [= μa(2)] = 0.2 mm-1 and a fixed CCS of d = 40 mm, which qualitatively demonstrate the superiority of the TR algorithm over the featured-data algorithms in reconstruction quantitativeness.

Fig. 6
Fig. 6

Measures for evaluating reconstruction quantitativeness as functions of the absorption coefficient of the targets for both the TR and the featured-data algorithms when the same mesh and source–detector pairs are used as before: (a) relative mean squared error, (b) relative peak reproducibility, (c) target centroid error, (d) relative full width at half-maximum.

Fig. 7
Fig. 7

Reconstructed images of the same phantom as before with a CCS of d = 40 mm and μa(i) = 0.02 mm-1 (i = 1, 2) by the TR algorithm when the absolute (top row) and normalized (bottom row) TR data with varying SNR are used; (b) relative error norms as functions of the iteration number with the stopping points of the iterations marked individually.

Fig. 8
Fig. 8

(a) Geometric sketch of the circular phantom for simultaneous reconstruction of absorption and scattering; (b) time-resolved reemissions at a source-opposite position calculated for the corresponding background medium at four different time resolutions, Δt = 10, 20, 40, and 80 ps.

Fig. 9
Fig. 9

(a) Target images of the phantom as depicted in Fig. 8 (a) with the left column for μa and the right for μs′, (b) reconstructed images from 〈t〉 & c2, (c) normalized TR data with the homogeneous background as the initial guess, (d) normalized TR data with the reconstructed images from 〈t〉 & c2 as the initial guess.

Fig. 10
Fig. 10

Images of the same phantom as used in Fig. 6 with the time-slice algorithm from the noisy TR data of η = 40 dB and for different slice widths: (a) image by the normalized TR algorithm shown for comparison, (b) ΔT = 400 ps, (c) 800 ps, (d) 1600 ps.

Fig. 11
Fig. 11

Relative execution time per iteration among the used featured-data and TR algorithms for the same mesh, time range, and resolution, where the execution time of the featured-data algorithm with 〈t〉 & c2 is set to 100%.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

·κr-μarc-t Φr, rs, t=-δr-rs, tcΦr, rs, t+2κr1+Rf1-Rfen·Φr, rs, trΩ=0,
Γξd, ζs, t=c21-Rf1+Rf Φξd, ζs, t,
A+BΦt+CdΦtdt=Qt,
Amn=Ωκrumr·unr+μarcumrunrdr, Bmn=c21-Rf1+RfΩ umrunrdr, Cmn=Ω umrunrdr, Qmt=Ω umrδr-rs, tdr=umrsδt,
A+BΔt+CΦi+1+CΦi=Qi+1.
M-Fpk=Jpkδpk, pk+1=pk+δpk,
δΓξd, ζs, t=-0tΩΓξd, r, t-τ·Φr, ζs, τcδμar+rΓξd, r, t-τ·rΦr, ζs, τδκrdrdτ.
Jaξd, ζs, ti=-0tiΩ Γξd, r, ti-τΦr, ζs, τcu1rdrdτ-0tiΩ Γξd, r, ti-τΦr, ζs, τcu2rdrdτ-0tiΩ Γξd, r, ti-τΦr, ζs, τcuNrdrdτT,
Jκξd, ζs, ti=-0tiΩ rΓξd, r, ti-τ·rΦr, ζs, τu1rdrdτ-0tiΩ rΓξd, r, ti-τ·rΦr, ζs, τu2rdrdτ-0tiΩ rΓξd, r, ti-τ·rΦr, ζs, τuNrdrdτT.
Eξd, ζs=-+ Γξd, ζs, tdt.
J¯υξd, ζs, t=Jvξd, ζs, tEξd, ζs-Γ¯ξd, ζs, tJvEξd, ζsEξd, ζs, va, κ.
δpkj+1=δpkj+λbj-Jjpk·δpkjJjpk2JjpkT, δpk0=0, pk+1=pk+δpkI×D×S, j=0, 1, 2,  I×D×S,
εk=W i=1Is=1Sd=1DΓξd, ζs, ti-Fkξd, ζs, tiΓξd, ζs, ti2,
W=1i=1Is=1Sd=1DΓξd, ζs, ti-F0ξd, ζs, tiΓξd, ζs, ti2,
maxd,s,iFΔt=20 psξd, ζs, ti-FΔt=10 psξd, ζs, tiFΔt=10 psξd, ζs, ti)=2.29×10-4.
Cr=0.5 i=12μˆaxi-μˆax0Δμˆaxi+Δμˆax0,
Rg=1TDFΔμˆax1-Δμˆax2Δμˆax1+Δμˆax2,
εr-MSE=-RRμax-μˆax2d-RRμax2dx,
ρr-PR=0.5 i=12|Δμˆaxi/μai-μa0|,
εTCE=0.5-R0 xμˆaxdx-R0 μˆax+d2+0R μˆaxdx0R μˆax-d2,
wr-FWHM=0.5i=12|x˜1i-x˜2i|/2ri,
ΓΔTξd, ζs, tm=0ΔTΓξd, ζs, tm+τdτ,
δΓΔTξd, ζs, tm=-0tΩΓΔTξd, r, tm-τ·Φr, ζs, τcδμar+rΓΔTξd, r, tm-τ·rΦr, ζs, τδκrdrdτ.
J¯vΔTξd, ζs, t=JvΔTξd, ζs, tEξd, ζs-Γ¯ΔTξd, ζs, tJEξd, ζsEξd, ζs,
Γ¯ΔTξd, ζs, t=ΓΔTξd, ζs, tm/Eξd, ζs.

Metrics