Abstract

In the field of diffuse optical tomography (DOT), it is widely accepted that time-resolved (TR) measurement can provide the richest information on photon migration in a turbid medium, such as biological tissue. However, the currently available image reconstruction algorithms for TR DOT are based mostly on the cw component or some featured data types of original temporal profiles, which are related to the solution of a time-independent diffusion equation. Although this methodology can greatly simplify the reconstruction process, it suffers from low spatial resolution and poor quantitativeness owing to the limitation of effectively applicable data types. To improve image quality, it has been argued that exploiting the full TR data is essential. We propose implementation of a DOT algorithm by using full TR data and furthermore a variant algorithm with time slices of TR data to alleviate the computational complexity and enhance noise robustness. Compared with those algorithms where the featured data types are used, our evaluations on the spatial resolution and quantitativeness show that a significant improvement in imaging quality can be achieved when full TR data are used, which convinces the DOT community of the potential advantage of the TR domain over cw and frequency domains.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription