Abstract

Modulated (frequency-domain) infrared photothermal radiometry (PTR) is used as a dynamic quantitative dental inspection tool complementary to modulated luminescence (LM) to quantify sound enamel or dentin. A dynamic high-spatial-resolution experimental imaging setup, which can provide simultaneous measurements of laser-induced modulated PTR and LM signals from defects in teeth, has been developed. Following optical absorption of laser photons, the experimental setup can monitor simultaneously and independently the nonradiative (optical-to-thermal) energy conversion by infrared PTR and the radiative deexcitation by LM emission. The relaxation lifetimes (τ1, τ2) and optical absorption, scattering, and spectrally averaged infrared emission coefficients (μα, μs, μ¯IR) of enamel are then determined with realistic three-dimensional LM and photothermal models for turbid media followed by multiparameter fits to the data. A quantitative band of values for healthy enamel with respect to these parameters can be generated so as to provide an explicit criterion for the assessment of healthy enamel and, in a future extension, to facilitate the diagnosis of the onset of demineralization in carious enamel.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Longbottom, “Caries detection—current status and future prospects using lasers,” in Lasers in Dentistry VI, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3910, 212–218 (2000).
    [CrossRef]
  2. V. D. Rijke, J. J. ten Bosch, “Optical quantification of caries like lesions in vitro by use of fluorescent dye,” J. Dent. Res. 69, 1184–1187 (1990).
    [CrossRef] [PubMed]
  3. K. Konig, H. Schneckenburger, R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell Mol. Biol. 45, 233–239 (1999).
    [PubMed]
  4. K. Konig, G. Flemming, K. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell Mol. Biol. 44, 1293–1300 (1998).
  5. L. Nicolaides, A. Mandelis, S. H. Abrams, “Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” J. Biomed. Opt. 5, 31–39 (2000).
    [CrossRef] [PubMed]
  6. A. Mandelis, L. Nicolaides, C. Feng, S. H. Abrams, “Novel dental depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” in Biomedical Optoacoustics, A. Oraevsky, ed., Proc. SPIE3916, 130–137 (2000).
    [CrossRef]
  7. A. J. Welch, M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
    [CrossRef]
  8. S. A. Prahl, A. I. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
    [CrossRef] [PubMed]
  9. A. Mandelis, C. Feng, “Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media,” Phys. Rev. E (to be published).
  10. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  11. A. Ishimaru, Y. Kuga, R. L.-T. Cheung, K. Shimizu, “Scattering and diffusion of a beam wave in randomly distributed scatterers,” J. Opt. Soc. Am. 73, 131–136 (1983).
    [CrossRef]
  12. A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, New York, 2001).
    [CrossRef]
  13. R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques, J. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry,” Appl. Opt. 28, 2256–2262 (1989), Eq. (8)
  14. R. A. J. Groenhuis, H. A. Ferwerda, J. J. T. Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: theory,” Appl. Opt. 22, 2456–2462 (1983).
    [CrossRef] [PubMed]
  15. M. N. Osizik, Boundary Value Problems of Heat Conduction (Dover, New York, 1968).
  16. J. Vanniasinkam, A. Mandelis, M. Munidasa, M. Kokta, “Deconvolution of surface and direct metastable-state blackbody emission in Ti:sapphire laser materials using boxcar time-domain photothermal radiometry,” J. Opt. Soc. Am. B 15, 1647–1655 (1998).
    [CrossRef]
  17. B. Majaron, W. Verkruysse, B. S. Tanenbaum, T. E. Milner, J. S. Nelson, “Pulsed photothermal profiling of hypervascular lesions: some recent advances,” in Lasers in Surgery: Advanced Characterization, Therapeutics and Systems X, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, N. Kollias, H. Liu, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Towers, T. A. Woodward, eds., Proc. SPIE3907, 114–125 (2000).
  18. W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
    [CrossRef]
  19. R. E. Imhof, B. Zhang, D. J. S. Birch, “Photothermal radiometry for NDE,” in Non-Destructive Evaluation, Vol. 2 of Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Chap. 7, pp. 185–236.
  20. D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tissue Res. 17, 129–137 (1975).
    [CrossRef] [PubMed]
  21. D. Fried, R. E. Glena, J. D. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” App. Opt. 34, 1278–1285 (1995).
    [CrossRef]
  22. M. Braden, “Heat conduction in normal human teeth,” Arch. Oral Biol. 9, 479–486 (1964).
    [CrossRef] [PubMed]
  23. W. M. Star, J. P. A. Marijnissen, “New trends in photobiology light dosimetry: status and prospects,” J. Photochem. Photobiol. B 1, 149–159 (1987).
    [CrossRef] [PubMed]
  24. J. R. Zijp, J. J. ten Bosch, R. A. J. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891–1898 (1995).
    [CrossRef] [PubMed]
  25. J. W. Osborn, “The nature of Hunter-Shreger bands in enamel,” Arch. Oral Biol. 10, 929–933 (1965).
    [CrossRef] [PubMed]
  26. A. J. Gwinnett, “Structure and composition of enamel,” J. Oper. Dent. 17, Suppl. 5, 10–17 (1992).

2000 (1)

L. Nicolaides, A. Mandelis, S. H. Abrams, “Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” J. Biomed. Opt. 5, 31–39 (2000).
[CrossRef] [PubMed]

1999 (1)

K. Konig, H. Schneckenburger, R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell Mol. Biol. 45, 233–239 (1999).
[PubMed]

1998 (2)

1995 (2)

D. Fried, R. E. Glena, J. D. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” App. Opt. 34, 1278–1285 (1995).
[CrossRef]

J. R. Zijp, J. J. ten Bosch, R. A. J. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891–1898 (1995).
[CrossRef] [PubMed]

1992 (2)

A. J. Gwinnett, “Structure and composition of enamel,” J. Oper. Dent. 17, Suppl. 5, 10–17 (1992).

S. A. Prahl, A. I. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

1990 (1)

V. D. Rijke, J. J. ten Bosch, “Optical quantification of caries like lesions in vitro by use of fluorescent dye,” J. Dent. Res. 69, 1184–1187 (1990).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

W. M. Star, J. P. A. Marijnissen, “New trends in photobiology light dosimetry: status and prospects,” J. Photochem. Photobiol. B 1, 149–159 (1987).
[CrossRef] [PubMed]

1984 (1)

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

1983 (2)

1975 (1)

D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tissue Res. 17, 129–137 (1975).
[CrossRef] [PubMed]

1965 (1)

J. W. Osborn, “The nature of Hunter-Shreger bands in enamel,” Arch. Oral Biol. 10, 929–933 (1965).
[CrossRef] [PubMed]

1964 (1)

M. Braden, “Heat conduction in normal human teeth,” Arch. Oral Biol. 9, 479–486 (1964).
[CrossRef] [PubMed]

Abrams, S. H.

L. Nicolaides, A. Mandelis, S. H. Abrams, “Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” J. Biomed. Opt. 5, 31–39 (2000).
[CrossRef] [PubMed]

A. Mandelis, L. Nicolaides, C. Feng, S. H. Abrams, “Novel dental depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” in Biomedical Optoacoustics, A. Oraevsky, ed., Proc. SPIE3916, 130–137 (2000).
[CrossRef]

Anderson, R. R.

S. A. Prahl, A. I. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques, J. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry,” Appl. Opt. 28, 2256–2262 (1989), Eq. (8)

Beck, H.

Birch, D. J. S.

R. E. Imhof, B. Zhang, D. J. S. Birch, “Photothermal radiometry for NDE,” in Non-Destructive Evaluation, Vol. 2 of Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Chap. 7, pp. 185–236.

Bosch, J. J. T.

Braden, M.

M. Braden, “Heat conduction in normal human teeth,” Arch. Oral Biol. 9, 479–486 (1964).
[CrossRef] [PubMed]

Bruggemann, U.

S. A. Prahl, A. I. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques, J. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry,” Appl. Opt. 28, 2256–2262 (1989), Eq. (8)

Cheung, R. L.-T.

Farinelli, W.

Featherstone, J. D. B.

D. Fried, R. E. Glena, J. D. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” App. Opt. 34, 1278–1285 (1995).
[CrossRef]

Feng, C.

A. Mandelis, L. Nicolaides, C. Feng, S. H. Abrams, “Novel dental depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” in Biomedical Optoacoustics, A. Oraevsky, ed., Proc. SPIE3916, 130–137 (2000).
[CrossRef]

A. Mandelis, C. Feng, “Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media,” Phys. Rev. E (to be published).

Ferwerda, H. A.

Flemming, G.

K. Konig, G. Flemming, K. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell Mol. Biol. 44, 1293–1300 (1998).

Fried, D.

D. Fried, R. E. Glena, J. D. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” App. Opt. 34, 1278–1285 (1995).
[CrossRef]

Glena, R. E.

D. Fried, R. E. Glena, J. D. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” App. Opt. 34, 1278–1285 (1995).
[CrossRef]

Groenhuis, R. A. J.

Gwinnett, A. J.

A. J. Gwinnett, “Structure and composition of enamel,” J. Oper. Dent. 17, Suppl. 5, 10–17 (1992).

Hibst, K.

K. Konig, G. Flemming, K. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell Mol. Biol. 44, 1293–1300 (1998).

Hibst, R.

K. Konig, H. Schneckenburger, R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell Mol. Biol. 45, 233–239 (1999).
[PubMed]

Imhof, R. E.

R. E. Imhof, B. Zhang, D. J. S. Birch, “Photothermal radiometry for NDE,” in Non-Destructive Evaluation, Vol. 2 of Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Chap. 7, pp. 185–236.

Ishimaru, A.

Jacques, S. L.

Kokta, M.

Konig, K.

K. Konig, H. Schneckenburger, R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell Mol. Biol. 45, 233–239 (1999).
[PubMed]

K. Konig, G. Flemming, K. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell Mol. Biol. 44, 1293–1300 (1998).

Kuga, Y.

Leung, W. P.

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

Longbottom, C.

C. Longbottom, “Caries detection—current status and future prospects using lasers,” in Lasers in Dentistry VI, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3910, 212–218 (2000).
[CrossRef]

Majaron, B.

B. Majaron, W. Verkruysse, B. S. Tanenbaum, T. E. Milner, J. S. Nelson, “Pulsed photothermal profiling of hypervascular lesions: some recent advances,” in Lasers in Surgery: Advanced Characterization, Therapeutics and Systems X, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, N. Kollias, H. Liu, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Towers, T. A. Woodward, eds., Proc. SPIE3907, 114–125 (2000).

Mandelis, A.

L. Nicolaides, A. Mandelis, S. H. Abrams, “Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” J. Biomed. Opt. 5, 31–39 (2000).
[CrossRef] [PubMed]

J. Vanniasinkam, A. Mandelis, M. Munidasa, M. Kokta, “Deconvolution of surface and direct metastable-state blackbody emission in Ti:sapphire laser materials using boxcar time-domain photothermal radiometry,” J. Opt. Soc. Am. B 15, 1647–1655 (1998).
[CrossRef]

A. Mandelis, C. Feng, “Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media,” Phys. Rev. E (to be published).

A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, New York, 2001).
[CrossRef]

A. Mandelis, L. Nicolaides, C. Feng, S. H. Abrams, “Novel dental depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” in Biomedical Optoacoustics, A. Oraevsky, ed., Proc. SPIE3916, 130–137 (2000).
[CrossRef]

Marijnissen, J. P. A.

W. M. Star, J. P. A. Marijnissen, “New trends in photobiology light dosimetry: status and prospects,” J. Photochem. Photobiol. B 1, 149–159 (1987).
[CrossRef] [PubMed]

Milner, T. E.

B. Majaron, W. Verkruysse, B. S. Tanenbaum, T. E. Milner, J. S. Nelson, “Pulsed photothermal profiling of hypervascular lesions: some recent advances,” in Lasers in Surgery: Advanced Characterization, Therapeutics and Systems X, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, N. Kollias, H. Liu, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Towers, T. A. Woodward, eds., Proc. SPIE3907, 114–125 (2000).

Munidasa, M.

Nelson, J. S.

B. Majaron, W. Verkruysse, B. S. Tanenbaum, T. E. Milner, J. S. Nelson, “Pulsed photothermal profiling of hypervascular lesions: some recent advances,” in Lasers in Surgery: Advanced Characterization, Therapeutics and Systems X, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, N. Kollias, H. Liu, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Towers, T. A. Woodward, eds., Proc. SPIE3907, 114–125 (2000).

Nicolaides, L.

L. Nicolaides, A. Mandelis, S. H. Abrams, “Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” J. Biomed. Opt. 5, 31–39 (2000).
[CrossRef] [PubMed]

A. Mandelis, L. Nicolaides, C. Feng, S. H. Abrams, “Novel dental depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” in Biomedical Optoacoustics, A. Oraevsky, ed., Proc. SPIE3916, 130–137 (2000).
[CrossRef]

Osborn, J. W.

J. W. Osborn, “The nature of Hunter-Shreger bands in enamel,” Arch. Oral Biol. 10, 929–933 (1965).
[CrossRef] [PubMed]

Osizik, M. N.

M. N. Osizik, Boundary Value Problems of Heat Conduction (Dover, New York, 1968).

Parrish, J.

Prahl, S. A.

S. A. Prahl, A. I. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Rijke, V. D.

V. D. Rijke, J. J. ten Bosch, “Optical quantification of caries like lesions in vitro by use of fluorescent dye,” J. Dent. Res. 69, 1184–1187 (1990).
[CrossRef] [PubMed]

Schneckenburger, H.

K. Konig, H. Schneckenburger, R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell Mol. Biol. 45, 233–239 (1999).
[PubMed]

Seka, W.

D. Fried, R. E. Glena, J. D. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” App. Opt. 34, 1278–1285 (1995).
[CrossRef]

Shimizu, K.

Spitzer, D.

D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tissue Res. 17, 129–137 (1975).
[CrossRef] [PubMed]

Star, W. M.

W. M. Star, J. P. A. Marijnissen, “New trends in photobiology light dosimetry: status and prospects,” J. Photochem. Photobiol. B 1, 149–159 (1987).
[CrossRef] [PubMed]

Tam, A. C.

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

Tanenbaum, B. S.

B. Majaron, W. Verkruysse, B. S. Tanenbaum, T. E. Milner, J. S. Nelson, “Pulsed photothermal profiling of hypervascular lesions: some recent advances,” in Lasers in Surgery: Advanced Characterization, Therapeutics and Systems X, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, N. Kollias, H. Liu, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Towers, T. A. Woodward, eds., Proc. SPIE3907, 114–125 (2000).

ten Bosch, J. J.

J. R. Zijp, J. J. ten Bosch, R. A. J. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891–1898 (1995).
[CrossRef] [PubMed]

V. D. Rijke, J. J. ten Bosch, “Optical quantification of caries like lesions in vitro by use of fluorescent dye,” J. Dent. Res. 69, 1184–1187 (1990).
[CrossRef] [PubMed]

D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tissue Res. 17, 129–137 (1975).
[CrossRef] [PubMed]

Vanniasinkam, J.

Verkruysse, W.

B. Majaron, W. Verkruysse, B. S. Tanenbaum, T. E. Milner, J. S. Nelson, “Pulsed photothermal profiling of hypervascular lesions: some recent advances,” in Lasers in Surgery: Advanced Characterization, Therapeutics and Systems X, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, N. Kollias, H. Liu, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Towers, T. A. Woodward, eds., Proc. SPIE3907, 114–125 (2000).

Vitkin, A. I.

S. A. Prahl, A. I. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

S. A. Prahl, A. I. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Zhang, B.

R. E. Imhof, B. Zhang, D. J. S. Birch, “Photothermal radiometry for NDE,” in Non-Destructive Evaluation, Vol. 2 of Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Chap. 7, pp. 185–236.

Zijp, J. R.

J. R. Zijp, J. J. ten Bosch, R. A. J. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891–1898 (1995).
[CrossRef] [PubMed]

App. Opt. (1)

D. Fried, R. E. Glena, J. D. B. Featherstone, W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” App. Opt. 34, 1278–1285 (1995).
[CrossRef]

Appl. Opt. (2)

Arch. Oral Biol. (2)

J. W. Osborn, “The nature of Hunter-Shreger bands in enamel,” Arch. Oral Biol. 10, 929–933 (1965).
[CrossRef] [PubMed]

M. Braden, “Heat conduction in normal human teeth,” Arch. Oral Biol. 9, 479–486 (1964).
[CrossRef] [PubMed]

Calcif. Tissue Res. (1)

D. Spitzer, J. J. ten Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tissue Res. 17, 129–137 (1975).
[CrossRef] [PubMed]

Cell Mol. Biol. (2)

K. Konig, H. Schneckenburger, R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell Mol. Biol. 45, 233–239 (1999).
[PubMed]

K. Konig, G. Flemming, K. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell Mol. Biol. 44, 1293–1300 (1998).

J. Appl. Phys. (1)

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

J. Biomed. Opt. (1)

L. Nicolaides, A. Mandelis, S. H. Abrams, “Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” J. Biomed. Opt. 5, 31–39 (2000).
[CrossRef] [PubMed]

J. Dent. Res. (2)

V. D. Rijke, J. J. ten Bosch, “Optical quantification of caries like lesions in vitro by use of fluorescent dye,” J. Dent. Res. 69, 1184–1187 (1990).
[CrossRef] [PubMed]

J. R. Zijp, J. J. ten Bosch, R. A. J. Groenhuis, “HeNe-laser light scattering by human dental enamel,” J. Dent. Res. 74, 1891–1898 (1995).
[CrossRef] [PubMed]

J. Oper. Dent. (1)

A. J. Gwinnett, “Structure and composition of enamel,” J. Oper. Dent. 17, Suppl. 5, 10–17 (1992).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. B (1)

W. M. Star, J. P. A. Marijnissen, “New trends in photobiology light dosimetry: status and prospects,” J. Photochem. Photobiol. B 1, 149–159 (1987).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

S. A. Prahl, A. I. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Other (9)

A. Mandelis, C. Feng, “Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media,” Phys. Rev. E (to be published).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

B. Majaron, W. Verkruysse, B. S. Tanenbaum, T. E. Milner, J. S. Nelson, “Pulsed photothermal profiling of hypervascular lesions: some recent advances,” in Lasers in Surgery: Advanced Characterization, Therapeutics and Systems X, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, N. Kollias, H. Liu, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Towers, T. A. Woodward, eds., Proc. SPIE3907, 114–125 (2000).

A. Mandelis, L. Nicolaides, C. Feng, S. H. Abrams, “Novel dental depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence,” in Biomedical Optoacoustics, A. Oraevsky, ed., Proc. SPIE3916, 130–137 (2000).
[CrossRef]

A. J. Welch, M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

C. Longbottom, “Caries detection—current status and future prospects using lasers,” in Lasers in Dentistry VI, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3910, 212–218 (2000).
[CrossRef]

R. E. Imhof, B. Zhang, D. J. S. Birch, “Photothermal radiometry for NDE,” in Non-Destructive Evaluation, Vol. 2 of Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1994), Chap. 7, pp. 185–236.

A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, New York, 2001).
[CrossRef]

M. N. Osizik, Boundary Value Problems of Heat Conduction (Dover, New York, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the FD PTR and LM imaging instrumentation. AOM, acousto-optic modulator.

Fig. 2
Fig. 2

Side view cross section of a dentin-enamel interface of an extracted molar.

Fig. 3
Fig. 3

Simultaneous FD LM and PTR frequency responses at five locations as marked in Fig. 2. Location 1, pure dentin; locations 2–5, increasingly thicker enamel overlayers on dentin (see text). (a) LM amplitude scan; (b) LM phase scan; (c) PTR amplitude scan; (d) PTR phase scan.

Fig. 4
Fig. 4

Top view of a tooth with healthy enamel (tooth 2). The boxed region shows the region from which the data in Fig. 5 were collected.

Fig. 5
Fig. 5

LM and PTR frequency response from healthy intact enamel (tooth 2). (a) LM amplitude scan; (b) LM phase scan; (c) PTR amplitude scan; (d) PTR phase scan. Fitting parameters for the LM signal were τ1 = 1.6 ms, τ2 = 0.22 µs, NT 1 = 919, NT2 = 5 × 104, W1 = 10 s-1, W2 = 3.2 s-1. Fitting parameters for the PTR signals were μα = 2.6 cm-1, μ¯IR = 2200 cm-1, μs = 92 cm-1, h = 1 × 107 W/m2K, α = 4.2 × 10-7 m2/s, k = 0.9 W/mK, g = 0.96.

Fig. 6
Fig. 6

Three-dimensional contour for optimal solution set (μα, μs, μ¯IR) for the healthy enamel of tooth 2.

Tables (1)

Tables Icon

Table 1 Measurements of Fluorophore Lifetimes (τ1 and τ2) from FD LM Phases and Enamel Optical Properties (μα, μs, μ¯ IR) from FD PTR Amplitude and Phase Fits to the Theorya

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

ρω=NT1τ1W1τ1+1+iωτ1+NT2τ2W2τ2+1+iωτ2,
Et=E1+E2=I0E01W1τ1+1+iωτ1+E02W2τ2+1+iωτ2,
Qr, z; ω=ηNRμαΨtr, z; ωEt W/m3,
Ψtr, z; ω=Ψdr, z; ω+Ψcr, z; ω,
Ψcr, z; ω=[P1-R/πW2]exp-2r2/W2-μtz,
μtμα+μs.
2ψdr, z; ω-3μαμtψdr, z; ω=-1D Gr, z; ω,
Gr, z; ωC1ω exp-2r2/W2-μtz;
D=1/3μt
C1ω1-RPμs2πW2μt+gμαμt-gμs[1+expiωt],
μtμt-gμs=μα+1-gμs=μα+μs m-1,
ϕ˜dz; λ, ω=0ψdr, z; ωJ0λrrdr,
d2dz2 ϕ˜dz; λ, ω-β2ϕ˜dz; λ, ω=-1D ˜Gz; λ, ω,
β2λλ2+μα/D m-2,
G˜z; λ, ωC1W2 exp[-λ2W2/8-μtz]×[1+expiωt].
ϕ˜d0; λ, ω-A ddz ϕ˜dz; λ, ω|z=0=-3μsgAĨλ, ω,
ϕ˜dL; λ, ω+A ddz ϕ˜dz; λ, ω|z=L=3μsgA exp-μtLĨλ, ω,
Ĩλ, ω=P1-R2πW2expiωt×0exp-2r2/W2J0λrrdr=P1-R2πexp[-λ2W2/8+iωt]
ϕ˜cz; λ, ω=Ĩλ, ωexp-μtz.
ϕ˜z; λ, ω=ϕ˜cz; λ, ω+ϕ˜dz; λ, ω=[F1-γF2 exp-βL]exp-βz+[F2-γF1 exp-βL]exp[-βL-z]1+Aβ[1-γ2 exp-2βL]+1-1Dμt+gμαμt-gμsμsμt2-β2exp-μtzĨλ, ω.
A=2D1+r211-r21 m; γ1-Aβ1+Aβ,
F1=1D1+μtAμt2-β2μt+gμαμt-gμs-2gμtμsĨλ, ω,
F2=1D1-μtAμt2-β2μt+gμαμt-gμs+2gμtμs×exp-μtLĨλ, ω.
2Tr, z; ω-σt2ωTr, z; ω=-ηNRμα/ktψtr, z; ω,
σtω=iω/α m-1
-ktnˆTr, z; ω|z=0,L=hTr, z; ω|z=0,L.
nˆ·=-zz=0, nˆ·=zz=L.
τ˜λ, z; ω=0 Tr, z; ωJ0λrrdr.
ũλ, ω=C Λ1Λ2 WΛμIRΛdΛ 0L τ˜z; λ, ω×exp[-μIRΛz]dz,
ũλ, ω=ũλ, ωΛ1Λ2 WΛdΛ.
μeff exp-μeffz=Λ1Λ2 WΛμIRΛexp[-μIRΛz]dΛΛ1Λ2 WΛdΛ,
ũλ, ω=C 0L μeff exp-μeffzτ˜z; λ, ωdzCμ¯IR0L τ˜z; λ, ωexp-μ¯IRzdz.
ũλ, ω=Cμ¯IRB11-exp-β+μ¯IRLβ+μ¯IR+ktβ-h1-exp-2qL×1-exp-μ¯IR-qLh+ktqμ¯IR-qexp-β+qL-exp-2qL+1-exp-μ¯IR+qLh-ktqμ¯IR+q1-exp-β+qL+B21-exp[-μ¯IR-βL]μ¯IR-β-ktβ+h1-exp-2qL×1-exp-μ¯IR-qLh+ktqμ¯IR-qexp-q-βL-exp-2qL+1-exp-μ¯IR+qLh-ktqμ¯IR+q1-exp-q-βL+B31-exp-μ¯IR+μtLμ¯IR+μt+ktμt-h1-exp-2qL×1-exp-μ¯IR-qLh+ktqμ¯IR-q×exp-μt+qL-exp-2qL+1-exp-μ¯IR+qLh-ktqμ¯IR+q×1-exp-μt+qL,
B1λ, ω=ηNRμαktβ2-q2b1λ, ω,
B2λ, ω=-ηNRμαktβ2-q2b2λ, ω,
B3λ, ω=-ηNRμαktμt2-q2b3λ, ω,
b1λ, ω1Hλ, ω-F1+γF2 exp-βL,
b2λ, ω1Hλ, ωF2-γF1 exp-βLexp-βL,
b3λ, ω1-μsDμt2-β2μt+gμαμt-gμsĨλ, ω,
Hλ, ω1+Aβ1-γ2 exp-2βL,
q2λ, ωλ2+σt2ω m-2.

Metrics