Abstract

A Fourier-transform imaging spectrometer, believed to be novel, based on the Savart polariscope is presented. There is no slit in this instrument, which means that it has a high throughput. The principle and the system configuration are described. Several preliminary experimental results are shown.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
    [CrossRef]
  2. P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
    [CrossRef]
  3. L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
    [CrossRef]
  4. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 11, pp. 143–145.
  5. G. W. Stroke, A. T. Funkhouser, “Fourier transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
    [CrossRef]
  6. M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
    [CrossRef]
  7. M. Françcon, S. Mallick, Polarization Interferometer (Wiley, New York, 1971), Chap. 2, pp. 20–23.
  8. M. Hashimoto, S. Kawata, “Multichannel Fourier-transform infrared spectrometer,” Appl. Opt. 31, 6096–6101 (1992).
    [CrossRef] [PubMed]
  9. J. B. Rafert, R. G. Sellar, J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228–7230 (1995).
    [CrossRef] [PubMed]
  10. M. L. Junttila, J. Kauppinen, E. Ikonen, “Performance limits of stationary Fourier transform spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991).
    [CrossRef]
  11. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, pp. 20–21.

1995 (3)

M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
[CrossRef]

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

J. B. Rafert, R. G. Sellar, J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228–7230 (1995).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

1965 (1)

G. W. Stroke, A. T. Funkhouser, “Fourier transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, pp. 20–21.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 11, pp. 143–145.

Blatt, J. H.

Butler, E. W.

L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

Françcon, M.

M. Françcon, S. Mallick, Polarization Interferometer (Wiley, New York, 1971), Chap. 2, pp. 20–23.

Funkhouser, A. T.

G. W. Stroke, A. T. Funkhouser, “Fourier transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

Hammer, P. D.

P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
[CrossRef]

Harvey, A. R.

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

Hashimoto, M.

Ikonen, E.

Junttila, M. L.

Kauppinen, J.

Kawata, S.

Mallick, S.

M. Françcon, S. Mallick, Polarization Interferometer (Wiley, New York, 1971), Chap. 2, pp. 20–23.

Otten, L. J.

L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

Padgett, M. J.

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

Persky, M. J.

M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
[CrossRef]

Peterson, D. L.

P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
[CrossRef]

Rafert, J. B.

Sellar, R. G.

Stroke, G. W.

G. W. Stroke, A. T. Funkhouser, “Fourier transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

Valcro, F. P. J.

P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Phys. Lett. (1)

G. W. Stroke, A. T. Funkhouser, “Fourier transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

Rev. Sci. Instrum. (2)

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
[CrossRef]

Other (5)

P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
[CrossRef]

L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 11, pp. 143–145.

M. Françcon, S. Mallick, Polarization Interferometer (Wiley, New York, 1971), Chap. 2, pp. 20–23.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, pp. 20–21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical layout of the StFT imaging spectrometer based on the Sagnac interferometer. The imaging lens pertains to the fore-optical system of the StFT imaging spectrometer.

Fig. 2
Fig. 2

Optical layout of a novel imaging spectrometer with the Savart polariscope.

Fig. 3
Fig. 3

Calculation of optical path difference at Q.

Fig. 4
Fig. 4

Points on the dector. R0 is located on the optical axis.

Fig. 5
Fig. 5

Ordinary (O) and extraordinary (E) rays in the Savart polariscope.

Fig. 6
Fig. 6

Interferogram of a semiconductor laser.

Fig. 7
Fig. 7

Reconstructed spectrum of the semiconductor laser.

Fig. 8
Fig. 8

Experimental results: (a) object; (b) recovered polychromatic image; recovered monochromatic images at (c) λ = 458 nm, (d) λ = 514 nm, and (e) λ = 683 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δdx/f2,
d=no2-ne22no2+ne2t,
I0=TλBλΩAc,
E=AcΩ.
Ωs=wsls/f22,
Es=AsΩs=πwslsr22/f22,
ΩH=πr22/f22,
EH=AdΩH=πwdldr22/f22,
EHEs=wdldwsls.
ld=ls,

Metrics