Abstract

The eye’s acuity varies across its field of view (FOV), decreasing to 10% of its axial value at only 20°. We describe an optical system that radially remaps the pixels of a miniature display or sensor to match the varying acuity of the eye across its FOV. The variable-acuity technique increases the FOV of an electronic binocular system without any apparent loss in image quality. The result is a better, more efficient human–machine interface.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1990).
  2. B. A. Wandell, Foundations of Vision (Sinauer Associates, Inc., Sunderland, Mass., 1995).
  3. V. E. Diehl, “A variable acuity remote viewing system,” in Proceedings of the IEEE 1976 National Aerospace and Electronics Conference (Institute for Electrical and Electronics Engineers, New York, 1976), pp. 663–668.
  4. R. W. Fisher, “Variable acuity remote viewing system (VARVS),” in Proceedings of the IEEE 1978 National Aerospace and Electronics Conference NAECON 78 (Institute of Electrical and Electronics Engineers, New York, 1978), pp. 1172–1179.
  5. R. W. Fisher, “Psychophysical problems and solutions in variable acuity displays,” in 1984 Society for Information Design International Symposium, Digest of Technical Papers (Palisades Institute for Research Services, New York, 1984), pp. 291–293.
  6. R. Fisher, retired from McDonnell Aircraft Co., P.O. Box 516, St. Louis, Mo. 63166 (personal communication, 1998).
  7. M. Shenker, “Visual-simulation optical systems,” in Los Alamos Conference on Optics ’83, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE380, 22–29 (1983).
    [CrossRef]
  8. P. Wetzel, M. Thomas, T. Williams, “Evaluation of eye tracking measurement system for use with the fiber optic helmet mounted display,” in Cockpit Displays and Visual Simulation, H. M. Assenheim, H. H. Bell, eds., Proc. SPIE1289, 163–167 (1990).
    [CrossRef]
  9. E. Howlett, “High-resolution inserts in wide-angle head-mounted stereoscopic displays,” in Stereoscopic Displays and Applications III, J. O. Merritt, S. S. Fisher, eds., Proc. SPIE1669, 193–203 (1992).
    [CrossRef]
  10. G. Kelly, M. Shenker, P. Weissman, “Helmet-mounted area of interest,” in Helmet-Mounted Displays III, T. M. Lippert, ed., Proc. SPIE1695, 58–63 (1992).
    [CrossRef]
  11. J. P. Rolland, A. Yoshida, L. D. Davis, J. H. Reif, “High-resolution inset head-mounted display,” Appl. Opt. 37, 4183–4193 (1998).
    [CrossRef]
  12. N. Alvertos, E. L. Hall, R. L. Anderson, “Omnidirectional viewing: the fish-eye lens problem,” in Proceedings of the IEEE SOUTHEASTCON ’83 Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 174–179.
  13. Y. Suematsu, T. Hayase, “An advanced vision sensor with fovea,” in Proceedings of IECON ’90: 16th Annual Conference of the IEEE Industrial Electronics Society Conference (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 1343, pp. 581–585.
  14. S. Shimizu, Y. Suematsu, S. Yahata, “A wide angle vision sensor with high distortion lens-detection of camera location and gaze direction based on two-parallel-line algorithm,” in Proceedings of the 1996 IEEE IECON: 22nd International Conference on Industrial Electronics, Control, and Instrumentation Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1600–1605.
  15. S. Shimizu, Y. Suematsu, S. Yahata, “Wide-angle vision sensor with high-distortion lens (Detection of camera location and gaze direction based on the two-parallel-line algorithm),” JSME Int. J. Ser. C 41, 893–900 (1998).
    [CrossRef]
  16. Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in ACCV 95: Proceedings of the Second Asian Conference on Computer Vision (Nanyang Technological University, Singapore, 1995), pp. 191–200.
  17. K. Daniilidis, “Computation of 3D-motion parameters using the log-polar transform,” in Computer Analysis of Images and Patterns: Proceedings of the 6th International Conference CAIP’95 (Springer-Verlag; Berlin, 1995), pp. 82–89.
    [CrossRef]
  18. F. L. Lim, S. Venkatesh, G. A. W. West, “Resolution considerations in spatially variant sensors,” in Proceedings of the 13th International Conference on Pattern Recognition, (IEEE Computer Society, Los Alamitos, Calif., 1996), Vol. 1, pp. 795–799.
  19. G. Kreider, J. Van der Speigel, “A retina like space variant CCD sensor,” in Charge-Coupled Devices and Solid State Optical Sensors, M. M. Blouke, ed., Proc. SPIE1242, 133–140 (1990).
    [CrossRef]
  20. I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).
  21. F. Pardo, B. Dierickx, D. Scheffer, “Space-variant nonorthogonal structure CMOS image sensor design,” IEEE J. Solid-State Circuits 33, 842–849 (1998).
    [CrossRef]
  22. R. Etienne-Cummings, J. Van der Spiegel, P. Mueller, M. Zhang, “A foveated silicon retina for two-dimensional tracking,” IEEE Trans. Circuits Syst. II 47, 504–517 (2000).
    [CrossRef]
  23. S. Lee, A. C. Bovik, “Foveated video image analysis and compression gain measurements,” in Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation (IEEE Computer Society, Los Alamitos, Calif., 2000), pp. 63–67.
  24. B. A. Watson, L. F. Hodges, “Using texture maps to correct for optical distortion in head-mounted displays,” in Proceedings of the Virtual Reality Annual International Symposium ‘95 (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 172–178.
  25. M. Shenker, “Optical systems for direct view night vision devices,” in Applications of Geometrical Optics II, W. J. Smith, ed., Proc. SPIE39, 3–16 (1973).
    [CrossRef]
  26. E. K. Edwards, J. P. Rolland, K. P. Keller, “Video see-through design for merging of real and virtual environments,” in Proceedings of the IEEE Virtual Reality Annual International Symposium (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 223–233.
  27. W. Schoenmakers, B. Roland “Variable acuity optics study,” (unclassified) (Hughes Optical Products, Inc., Des Plaines, Ill., 1991). Final report submitted under contract DAAB07-87-C-F059, which was a three-phase program from August 1987 to January 1991.
  28. K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable addressability image sensors and display systems,” in Proceedings of the 1998 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1998), pp. 415–418.
  29. T. Bui, R. H. Vollmerhausen, B. H. Tsou, “Overlap binocular field-of-view flight experiment,” in Proceedings of the 1994 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1994), pp. 306–308.
  30. G. H. Robinson, “Dynamics of the eye and head during movement between displays: a qualitative and quantitative guide for designers,” Hum. Factors 21, 343–352 (1979).
  31. G. R. Barnes, “Vestibulo-ocular function during coordinated head and eye movements to acquire visual targets,” J. Physiol. 287, 127–147 (1979).
    [PubMed]
  32. M. J. Wells, M. Venturino, “Performance and head movements using a helmet-mounted display with different sized fields-of-view,” Opt. Eng. 29, 870–877 (1990).
    [CrossRef]
  33. B. Brown, “Dynamic visual acuity, eye movements and peripheral acuity for moving targets,” Vision Res. 12, 305–321 (1972).
    [CrossRef] [PubMed]
  34. J. W. Miller, E. J. Ludvigh, “The effect of relative motion on visual acuity,” Surv. Ophthalmol. 7, 83–116 (1962).
    [PubMed]
  35. E. Ludvigh, J. W. Miller, “Study of visual acuity during the ocular pursuit of moving test objects. I. Introduction,” J Opt. Soc. Am. 48, 799–802 (1958).
    [CrossRef] [PubMed]
  36. R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
    [CrossRef] [PubMed]

2000 (1)

R. Etienne-Cummings, J. Van der Spiegel, P. Mueller, M. Zhang, “A foveated silicon retina for two-dimensional tracking,” IEEE Trans. Circuits Syst. II 47, 504–517 (2000).
[CrossRef]

1998 (3)

J. P. Rolland, A. Yoshida, L. D. Davis, J. H. Reif, “High-resolution inset head-mounted display,” Appl. Opt. 37, 4183–4193 (1998).
[CrossRef]

S. Shimizu, Y. Suematsu, S. Yahata, “Wide-angle vision sensor with high-distortion lens (Detection of camera location and gaze direction based on the two-parallel-line algorithm),” JSME Int. J. Ser. C 41, 893–900 (1998).
[CrossRef]

F. Pardo, B. Dierickx, D. Scheffer, “Space-variant nonorthogonal structure CMOS image sensor design,” IEEE J. Solid-State Circuits 33, 842–849 (1998).
[CrossRef]

1993 (1)

1990 (2)

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

M. J. Wells, M. Venturino, “Performance and head movements using a helmet-mounted display with different sized fields-of-view,” Opt. Eng. 29, 870–877 (1990).
[CrossRef]

1979 (2)

G. H. Robinson, “Dynamics of the eye and head during movement between displays: a qualitative and quantitative guide for designers,” Hum. Factors 21, 343–352 (1979).

G. R. Barnes, “Vestibulo-ocular function during coordinated head and eye movements to acquire visual targets,” J. Physiol. 287, 127–147 (1979).
[PubMed]

1972 (1)

B. Brown, “Dynamic visual acuity, eye movements and peripheral acuity for moving targets,” Vision Res. 12, 305–321 (1972).
[CrossRef] [PubMed]

1962 (1)

J. W. Miller, E. J. Ludvigh, “The effect of relative motion on visual acuity,” Surv. Ophthalmol. 7, 83–116 (1962).
[PubMed]

1958 (1)

E. Ludvigh, J. W. Miller, “Study of visual acuity during the ocular pursuit of moving test objects. I. Introduction,” J Opt. Soc. Am. 48, 799–802 (1958).
[CrossRef] [PubMed]

Alvertos, N.

N. Alvertos, E. L. Hall, R. L. Anderson, “Omnidirectional viewing: the fish-eye lens problem,” in Proceedings of the IEEE SOUTHEASTCON ’83 Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 174–179.

Anderson, R. L.

N. Alvertos, E. L. Hall, R. L. Anderson, “Omnidirectional viewing: the fish-eye lens problem,” in Proceedings of the IEEE SOUTHEASTCON ’83 Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 174–179.

Artal, P.

Barnes, G. R.

G. R. Barnes, “Vestibulo-ocular function during coordinated head and eye movements to acquire visual targets,” J. Physiol. 287, 127–147 (1979).
[PubMed]

Bellutti, P.

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

Bovik, A. C.

S. Lee, A. C. Bovik, “Foveated video image analysis and compression gain measurements,” in Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation (IEEE Computer Society, Los Alamitos, Calif., 2000), pp. 63–67.

Bronckaers, E.

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

Brown, B.

B. Brown, “Dynamic visual acuity, eye movements and peripheral acuity for moving targets,” Vision Res. 12, 305–321 (1972).
[CrossRef] [PubMed]

Bui, T.

T. Bui, R. H. Vollmerhausen, B. H. Tsou, “Overlap binocular field-of-view flight experiment,” in Proceedings of the 1994 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1994), pp. 306–308.

Claeys, C.

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

Daniilidis, K.

K. Daniilidis, “Computation of 3D-motion parameters using the log-polar transform,” in Computer Analysis of Images and Patterns: Proceedings of the 6th International Conference CAIP’95 (Springer-Verlag; Berlin, 1995), pp. 82–89.
[CrossRef]

Dario, P.

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

Davis, L. D.

Debusschere, I.

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

Diehl, V. E.

V. E. Diehl, “A variable acuity remote viewing system,” in Proceedings of the IEEE 1976 National Aerospace and Electronics Conference (Institute for Electrical and Electronics Engineers, New York, 1976), pp. 663–668.

Dierickx, B.

F. Pardo, B. Dierickx, D. Scheffer, “Space-variant nonorthogonal structure CMOS image sensor design,” IEEE J. Solid-State Circuits 33, 842–849 (1998).
[CrossRef]

Edwards, E. K.

E. K. Edwards, J. P. Rolland, K. P. Keller, “Video see-through design for merging of real and virtual environments,” in Proceedings of the IEEE Virtual Reality Annual International Symposium (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 223–233.

Etienne-Cummings, R.

R. Etienne-Cummings, J. Van der Spiegel, P. Mueller, M. Zhang, “A foveated silicon retina for two-dimensional tracking,” IEEE Trans. Circuits Syst. II 47, 504–517 (2000).
[CrossRef]

Fantini, F.

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

Fisher, R.

R. Fisher, retired from McDonnell Aircraft Co., P.O. Box 516, St. Louis, Mo. 63166 (personal communication, 1998).

Fisher, R. W.

R. W. Fisher, “Variable acuity remote viewing system (VARVS),” in Proceedings of the IEEE 1978 National Aerospace and Electronics Conference NAECON 78 (Institute of Electrical and Electronics Engineers, New York, 1978), pp. 1172–1179.

R. W. Fisher, “Psychophysical problems and solutions in variable acuity displays,” in 1984 Society for Information Design International Symposium, Digest of Technical Papers (Palisades Institute for Research Services, New York, 1984), pp. 291–293.

Hall, E. L.

N. Alvertos, E. L. Hall, R. L. Anderson, “Omnidirectional viewing: the fish-eye lens problem,” in Proceedings of the IEEE SOUTHEASTCON ’83 Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 174–179.

Hatch, A.

K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable addressability image sensors and display systems,” in Proceedings of the 1998 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1998), pp. 415–418.

Hayase, T.

Y. Suematsu, T. Hayase, “An advanced vision sensor with fovea,” in Proceedings of IECON ’90: 16th Annual Conference of the IEEE Industrial Electronics Society Conference (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 1343, pp. 581–585.

Hodges, L. F.

B. A. Watson, L. F. Hodges, “Using texture maps to correct for optical distortion in head-mounted displays,” in Proceedings of the Virtual Reality Annual International Symposium ‘95 (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 172–178.

Hooker, R. B.

K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable addressability image sensors and display systems,” in Proceedings of the 1998 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1998), pp. 415–418.

Howlett, E.

E. Howlett, “High-resolution inserts in wide-angle head-mounted stereoscopic displays,” in Stereoscopic Displays and Applications III, J. O. Merritt, S. S. Fisher, eds., Proc. SPIE1669, 193–203 (1992).
[CrossRef]

Keller, K. P.

E. K. Edwards, J. P. Rolland, K. P. Keller, “Video see-through design for merging of real and virtual environments,” in Proceedings of the IEEE Virtual Reality Annual International Symposium (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 223–233.

Kelly, G.

G. Kelly, M. Shenker, P. Weissman, “Helmet-mounted area of interest,” in Helmet-Mounted Displays III, T. M. Lippert, ed., Proc. SPIE1695, 58–63 (1992).
[CrossRef]

Kita, N.

Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in ACCV 95: Proceedings of the Second Asian Conference on Computer Vision (Nanyang Technological University, Singapore, 1995), pp. 191–200.

Kreider, G.

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

G. Kreider, J. Van der Speigel, “A retina like space variant CCD sensor,” in Charge-Coupled Devices and Solid State Optical Sensors, M. M. Blouke, ed., Proc. SPIE1242, 133–140 (1990).
[CrossRef]

Kubala, K.

K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable addressability image sensors and display systems,” in Proceedings of the 1998 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1998), pp. 415–418.

Kuniyoshi, Y.

Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in ACCV 95: Proceedings of the Second Asian Conference on Computer Vision (Nanyang Technological University, Singapore, 1995), pp. 191–200.

Lee, S.

S. Lee, A. C. Bovik, “Foveated video image analysis and compression gain measurements,” in Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation (IEEE Computer Society, Los Alamitos, Calif., 2000), pp. 63–67.

Lewis, L.

K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable addressability image sensors and display systems,” in Proceedings of the 1998 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1998), pp. 415–418.

Lim, F. L.

F. L. Lim, S. Venkatesh, G. A. W. West, “Resolution considerations in spatially variant sensors,” in Proceedings of the 13th International Conference on Pattern Recognition, (IEEE Computer Society, Los Alamitos, Calif., 1996), Vol. 1, pp. 795–799.

Ludvigh, E.

E. Ludvigh, J. W. Miller, “Study of visual acuity during the ocular pursuit of moving test objects. I. Introduction,” J Opt. Soc. Am. 48, 799–802 (1958).
[CrossRef] [PubMed]

Ludvigh, E. J.

J. W. Miller, E. J. Ludvigh, “The effect of relative motion on visual acuity,” Surv. Ophthalmol. 7, 83–116 (1962).
[PubMed]

Miller, J. W.

J. W. Miller, E. J. Ludvigh, “The effect of relative motion on visual acuity,” Surv. Ophthalmol. 7, 83–116 (1962).
[PubMed]

E. Ludvigh, J. W. Miller, “Study of visual acuity during the ocular pursuit of moving test objects. I. Introduction,” J Opt. Soc. Am. 48, 799–802 (1958).
[CrossRef] [PubMed]

Mueller, P.

R. Etienne-Cummings, J. Van der Spiegel, P. Mueller, M. Zhang, “A foveated silicon retina for two-dimensional tracking,” IEEE Trans. Circuits Syst. II 47, 504–517 (2000).
[CrossRef]

Navarro, R.

Pardo, F.

F. Pardo, B. Dierickx, D. Scheffer, “Space-variant nonorthogonal structure CMOS image sensor design,” IEEE J. Solid-State Circuits 33, 842–849 (1998).
[CrossRef]

Reif, J. H.

Robinson, G. H.

G. H. Robinson, “Dynamics of the eye and head during movement between displays: a qualitative and quantitative guide for designers,” Hum. Factors 21, 343–352 (1979).

Roland, B.

W. Schoenmakers, B. Roland “Variable acuity optics study,” (unclassified) (Hughes Optical Products, Inc., Des Plaines, Ill., 1991). Final report submitted under contract DAAB07-87-C-F059, which was a three-phase program from August 1987 to January 1991.

Rolland, J. P.

J. P. Rolland, A. Yoshida, L. D. Davis, J. H. Reif, “High-resolution inset head-mounted display,” Appl. Opt. 37, 4183–4193 (1998).
[CrossRef]

E. K. Edwards, J. P. Rolland, K. P. Keller, “Video see-through design for merging of real and virtual environments,” in Proceedings of the IEEE Virtual Reality Annual International Symposium (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 223–233.

Rougeaux, S.

Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in ACCV 95: Proceedings of the Second Asian Conference on Computer Vision (Nanyang Technological University, Singapore, 1995), pp. 191–200.

Sandini, G.

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

Scheffer, D.

F. Pardo, B. Dierickx, D. Scheffer, “Space-variant nonorthogonal structure CMOS image sensor design,” IEEE J. Solid-State Circuits 33, 842–849 (1998).
[CrossRef]

Schoenmakers, W.

W. Schoenmakers, B. Roland “Variable acuity optics study,” (unclassified) (Hughes Optical Products, Inc., Des Plaines, Ill., 1991). Final report submitted under contract DAAB07-87-C-F059, which was a three-phase program from August 1987 to January 1991.

Shenker, M.

M. Shenker, “Optical systems for direct view night vision devices,” in Applications of Geometrical Optics II, W. J. Smith, ed., Proc. SPIE39, 3–16 (1973).
[CrossRef]

G. Kelly, M. Shenker, P. Weissman, “Helmet-mounted area of interest,” in Helmet-Mounted Displays III, T. M. Lippert, ed., Proc. SPIE1695, 58–63 (1992).
[CrossRef]

M. Shenker, “Visual-simulation optical systems,” in Los Alamos Conference on Optics ’83, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE380, 22–29 (1983).
[CrossRef]

Shimizu, S.

S. Shimizu, Y. Suematsu, S. Yahata, “Wide-angle vision sensor with high-distortion lens (Detection of camera location and gaze direction based on the two-parallel-line algorithm),” JSME Int. J. Ser. C 41, 893–900 (1998).
[CrossRef]

S. Shimizu, Y. Suematsu, S. Yahata, “A wide angle vision sensor with high distortion lens-detection of camera location and gaze direction based on two-parallel-line algorithm,” in Proceedings of the 1996 IEEE IECON: 22nd International Conference on Industrial Electronics, Control, and Instrumentation Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1600–1605.

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1990).

Soncini, G.

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

Suehiro, T.

Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in ACCV 95: Proceedings of the Second Asian Conference on Computer Vision (Nanyang Technological University, Singapore, 1995), pp. 191–200.

Suematsu, Y.

S. Shimizu, Y. Suematsu, S. Yahata, “Wide-angle vision sensor with high-distortion lens (Detection of camera location and gaze direction based on the two-parallel-line algorithm),” JSME Int. J. Ser. C 41, 893–900 (1998).
[CrossRef]

S. Shimizu, Y. Suematsu, S. Yahata, “A wide angle vision sensor with high distortion lens-detection of camera location and gaze direction based on two-parallel-line algorithm,” in Proceedings of the 1996 IEEE IECON: 22nd International Conference on Industrial Electronics, Control, and Instrumentation Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1600–1605.

Y. Suematsu, T. Hayase, “An advanced vision sensor with fovea,” in Proceedings of IECON ’90: 16th Annual Conference of the IEEE Industrial Electronics Society Conference (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 1343, pp. 581–585.

Thomas, M.

P. Wetzel, M. Thomas, T. Williams, “Evaluation of eye tracking measurement system for use with the fiber optic helmet mounted display,” in Cockpit Displays and Visual Simulation, H. M. Assenheim, H. H. Bell, eds., Proc. SPIE1289, 163–167 (1990).
[CrossRef]

Tsou, B. H.

T. Bui, R. H. Vollmerhausen, B. H. Tsou, “Overlap binocular field-of-view flight experiment,” in Proceedings of the 1994 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1994), pp. 306–308.

Van der Speigel, J.

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

G. Kreider, J. Van der Speigel, “A retina like space variant CCD sensor,” in Charge-Coupled Devices and Solid State Optical Sensors, M. M. Blouke, ed., Proc. SPIE1242, 133–140 (1990).
[CrossRef]

Van der Spiegel, J.

R. Etienne-Cummings, J. Van der Spiegel, P. Mueller, M. Zhang, “A foveated silicon retina for two-dimensional tracking,” IEEE Trans. Circuits Syst. II 47, 504–517 (2000).
[CrossRef]

Venkatesh, S.

F. L. Lim, S. Venkatesh, G. A. W. West, “Resolution considerations in spatially variant sensors,” in Proceedings of the 13th International Conference on Pattern Recognition, (IEEE Computer Society, Los Alamitos, Calif., 1996), Vol. 1, pp. 795–799.

Venturino, M.

M. J. Wells, M. Venturino, “Performance and head movements using a helmet-mounted display with different sized fields-of-view,” Opt. Eng. 29, 870–877 (1990).
[CrossRef]

Vollmerhausen, R. H.

T. Bui, R. H. Vollmerhausen, B. H. Tsou, “Overlap binocular field-of-view flight experiment,” in Proceedings of the 1994 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1994), pp. 306–308.

Wandell, B. A.

B. A. Wandell, Foundations of Vision (Sinauer Associates, Inc., Sunderland, Mass., 1995).

Watson, B. A.

B. A. Watson, L. F. Hodges, “Using texture maps to correct for optical distortion in head-mounted displays,” in Proceedings of the Virtual Reality Annual International Symposium ‘95 (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 172–178.

Weissman, P.

G. Kelly, M. Shenker, P. Weissman, “Helmet-mounted area of interest,” in Helmet-Mounted Displays III, T. M. Lippert, ed., Proc. SPIE1695, 58–63 (1992).
[CrossRef]

Wells, M. J.

M. J. Wells, M. Venturino, “Performance and head movements using a helmet-mounted display with different sized fields-of-view,” Opt. Eng. 29, 870–877 (1990).
[CrossRef]

West, G. A. W.

F. L. Lim, S. Venkatesh, G. A. W. West, “Resolution considerations in spatially variant sensors,” in Proceedings of the 13th International Conference on Pattern Recognition, (IEEE Computer Society, Los Alamitos, Calif., 1996), Vol. 1, pp. 795–799.

Wetzel, P.

P. Wetzel, M. Thomas, T. Williams, “Evaluation of eye tracking measurement system for use with the fiber optic helmet mounted display,” in Cockpit Displays and Visual Simulation, H. M. Assenheim, H. H. Bell, eds., Proc. SPIE1289, 163–167 (1990).
[CrossRef]

Williams, D. R.

Williams, T.

P. Wetzel, M. Thomas, T. Williams, “Evaluation of eye tracking measurement system for use with the fiber optic helmet mounted display,” in Cockpit Displays and Visual Simulation, H. M. Assenheim, H. H. Bell, eds., Proc. SPIE1289, 163–167 (1990).
[CrossRef]

Yahata, S.

S. Shimizu, Y. Suematsu, S. Yahata, “Wide-angle vision sensor with high-distortion lens (Detection of camera location and gaze direction based on the two-parallel-line algorithm),” JSME Int. J. Ser. C 41, 893–900 (1998).
[CrossRef]

S. Shimizu, Y. Suematsu, S. Yahata, “A wide angle vision sensor with high distortion lens-detection of camera location and gaze direction based on two-parallel-line algorithm,” in Proceedings of the 1996 IEEE IECON: 22nd International Conference on Industrial Electronics, Control, and Instrumentation Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1600–1605.

Yoshida, A.

Zhang, M.

R. Etienne-Cummings, J. Van der Spiegel, P. Mueller, M. Zhang, “A foveated silicon retina for two-dimensional tracking,” IEEE Trans. Circuits Syst. II 47, 504–517 (2000).
[CrossRef]

Appl. Opt. (1)

Hum. Factors (1)

G. H. Robinson, “Dynamics of the eye and head during movement between displays: a qualitative and quantitative guide for designers,” Hum. Factors 21, 343–352 (1979).

IEEE J. Solid-State Circuits (1)

F. Pardo, B. Dierickx, D. Scheffer, “Space-variant nonorthogonal structure CMOS image sensor design,” IEEE J. Solid-State Circuits 33, 842–849 (1998).
[CrossRef]

IEEE Trans. Circuits Syst. II (1)

R. Etienne-Cummings, J. Van der Spiegel, P. Mueller, M. Zhang, “A foveated silicon retina for two-dimensional tracking,” IEEE Trans. Circuits Syst. II 47, 504–517 (2000).
[CrossRef]

J Opt. Soc. Am. (1)

E. Ludvigh, J. W. Miller, “Study of visual acuity during the ocular pursuit of moving test objects. I. Introduction,” J Opt. Soc. Am. 48, 799–802 (1958).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Physiol. (1)

G. R. Barnes, “Vestibulo-ocular function during coordinated head and eye movements to acquire visual targets,” J. Physiol. 287, 127–147 (1979).
[PubMed]

JSME Int. J. Ser. C (1)

S. Shimizu, Y. Suematsu, S. Yahata, “Wide-angle vision sensor with high-distortion lens (Detection of camera location and gaze direction based on the two-parallel-line algorithm),” JSME Int. J. Ser. C 41, 893–900 (1998).
[CrossRef]

Opt. Eng. (1)

M. J. Wells, M. Venturino, “Performance and head movements using a helmet-mounted display with different sized fields-of-view,” Opt. Eng. 29, 870–877 (1990).
[CrossRef]

Sens. Actuators (1)

I. Debusschere, E. Bronckaers, C. Claeys, G. Kreider, J. Van der Speigel, G. Sandini, P. Dario, F. Fantini, P. Bellutti, G. Soncini, “A retinal CCD sensor for fast 2D shape recognition and tracking,” Sens. Actuators 21–23, 456–460 (1990).

Surv. Ophthalmol. (1)

J. W. Miller, E. J. Ludvigh, “The effect of relative motion on visual acuity,” Surv. Ophthalmol. 7, 83–116 (1962).
[PubMed]

Vision Res. (1)

B. Brown, “Dynamic visual acuity, eye movements and peripheral acuity for moving targets,” Vision Res. 12, 305–321 (1972).
[CrossRef] [PubMed]

Other (24)

S. Lee, A. C. Bovik, “Foveated video image analysis and compression gain measurements,” in Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation (IEEE Computer Society, Los Alamitos, Calif., 2000), pp. 63–67.

B. A. Watson, L. F. Hodges, “Using texture maps to correct for optical distortion in head-mounted displays,” in Proceedings of the Virtual Reality Annual International Symposium ‘95 (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 172–178.

M. Shenker, “Optical systems for direct view night vision devices,” in Applications of Geometrical Optics II, W. J. Smith, ed., Proc. SPIE39, 3–16 (1973).
[CrossRef]

E. K. Edwards, J. P. Rolland, K. P. Keller, “Video see-through design for merging of real and virtual environments,” in Proceedings of the IEEE Virtual Reality Annual International Symposium (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 223–233.

W. Schoenmakers, B. Roland “Variable acuity optics study,” (unclassified) (Hughes Optical Products, Inc., Des Plaines, Ill., 1991). Final report submitted under contract DAAB07-87-C-F059, which was a three-phase program from August 1987 to January 1991.

K. Kubala, A. Hatch, L. Lewis, R. B. Hooker, “Investigation into variable addressability image sensors and display systems,” in Proceedings of the 1998 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1998), pp. 415–418.

T. Bui, R. H. Vollmerhausen, B. H. Tsou, “Overlap binocular field-of-view flight experiment,” in Proceedings of the 1994 SID International Symposium, Digest of Technical Papers (Society for Information Display, San Jose, Calif., 1994), pp. 306–308.

Y. Kuniyoshi, N. Kita, S. Rougeaux, T. Suehiro, “Active stereo vision system with foveated wide angle lenses,” in ACCV 95: Proceedings of the Second Asian Conference on Computer Vision (Nanyang Technological University, Singapore, 1995), pp. 191–200.

K. Daniilidis, “Computation of 3D-motion parameters using the log-polar transform,” in Computer Analysis of Images and Patterns: Proceedings of the 6th International Conference CAIP’95 (Springer-Verlag; Berlin, 1995), pp. 82–89.
[CrossRef]

F. L. Lim, S. Venkatesh, G. A. W. West, “Resolution considerations in spatially variant sensors,” in Proceedings of the 13th International Conference on Pattern Recognition, (IEEE Computer Society, Los Alamitos, Calif., 1996), Vol. 1, pp. 795–799.

G. Kreider, J. Van der Speigel, “A retina like space variant CCD sensor,” in Charge-Coupled Devices and Solid State Optical Sensors, M. M. Blouke, ed., Proc. SPIE1242, 133–140 (1990).
[CrossRef]

N. Alvertos, E. L. Hall, R. L. Anderson, “Omnidirectional viewing: the fish-eye lens problem,” in Proceedings of the IEEE SOUTHEASTCON ’83 Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 174–179.

Y. Suematsu, T. Hayase, “An advanced vision sensor with fovea,” in Proceedings of IECON ’90: 16th Annual Conference of the IEEE Industrial Electronics Society Conference (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 1343, pp. 581–585.

S. Shimizu, Y. Suematsu, S. Yahata, “A wide angle vision sensor with high distortion lens-detection of camera location and gaze direction based on two-parallel-line algorithm,” in Proceedings of the 1996 IEEE IECON: 22nd International Conference on Industrial Electronics, Control, and Instrumentation Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1600–1605.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1990).

B. A. Wandell, Foundations of Vision (Sinauer Associates, Inc., Sunderland, Mass., 1995).

V. E. Diehl, “A variable acuity remote viewing system,” in Proceedings of the IEEE 1976 National Aerospace and Electronics Conference (Institute for Electrical and Electronics Engineers, New York, 1976), pp. 663–668.

R. W. Fisher, “Variable acuity remote viewing system (VARVS),” in Proceedings of the IEEE 1978 National Aerospace and Electronics Conference NAECON 78 (Institute of Electrical and Electronics Engineers, New York, 1978), pp. 1172–1179.

R. W. Fisher, “Psychophysical problems and solutions in variable acuity displays,” in 1984 Society for Information Design International Symposium, Digest of Technical Papers (Palisades Institute for Research Services, New York, 1984), pp. 291–293.

R. Fisher, retired from McDonnell Aircraft Co., P.O. Box 516, St. Louis, Mo. 63166 (personal communication, 1998).

M. Shenker, “Visual-simulation optical systems,” in Los Alamos Conference on Optics ’83, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE380, 22–29 (1983).
[CrossRef]

P. Wetzel, M. Thomas, T. Williams, “Evaluation of eye tracking measurement system for use with the fiber optic helmet mounted display,” in Cockpit Displays and Visual Simulation, H. M. Assenheim, H. H. Bell, eds., Proc. SPIE1289, 163–167 (1990).
[CrossRef]

E. Howlett, “High-resolution inserts in wide-angle head-mounted stereoscopic displays,” in Stereoscopic Displays and Applications III, J. O. Merritt, S. S. Fisher, eds., Proc. SPIE1669, 193–203 (1992).
[CrossRef]

G. Kelly, M. Shenker, P. Weissman, “Helmet-mounted area of interest,” in Helmet-Mounted Displays III, T. M. Lippert, ed., Proc. SPIE1695, 58–63 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Plot of the eye’s visual acuity function.

Fig. 2
Fig. 2

Example of uniform and variable-resolution images with the same amount of pixel information.

Fig. 3
Fig. 3

Variable-addressability implementation.

Fig. 4
Fig. 4

Optimum resolution curve.

Fig. 5
Fig. 5

Ideal distortion curve.

Fig. 6
Fig. 6

Demonstration of the system FOV.

Fig. 7
Fig. 7

Plots of axial acuity versus FOV for a uniform and a variable-acuity system, respectively, for a 640 × 480 pixel system.

Fig. 8
Fig. 8

Objective lens layout.

Fig. 9
Fig. 9

Spot size diagrams of the objective.

Fig. 10
Fig. 10

MTF plots of objective.

Fig. 11
Fig. 11

Eyepiece lens layout.

Fig. 12
Fig. 12

Spot diagrams for the eyepiece.

Fig. 13
Fig. 13

MTF plots for the eyepiece.

Fig. 14
Fig. 14

Comparison distortion curves.

Metrics