Abstract

We have studied experimentally, by using a differential interferometric technique, the effect of proton radiation on the refractive index of commercial (Schott) silicate crown glasses, BK7 and LaK9, and their radiation-resistant counterparts. The strongest effect was observed for the radiation-hard lanthanum crown LaK9G15: At a 0.65-Mrad dose the index change was approximately 3 × 10-5. Radiation-hard glasses are used in optical systems operating in radiation environments because they prevent spectral transmission degradation in the visible. However, such glasses are not protected against radiation-induced refractive-index perturbations, and a diffraction-limited optical system based on such glasses may fail owing to radiation-induced aberrations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37, 836–841 (1962).
    [CrossRef]
  2. I. H. Malitson, M. L. Dodge, “Radiation-induced instability in refractive properties of some optical glasses,” J. Opt. Soc. Am. 55, 1583 (1965).
  3. J. Bourrieau, M. Roméro, “Effect of space charged particle environment on optical components and materials,” in Proceedings of the ESA Symposium on Spacecraft Material, ESA SP-145 (European Space Agency, Munich, 1979), pp. 275–285.
  4. P. R. Silverglate, E. F. Zalewski, P. Petrone, “Proton-induced radiation effects on optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Breckinridge, A. J. Marker, eds., Proc. SPIE1761, 46–57 (1992).
    [CrossRef]
  5. M. J. Liepmann, L. Boehm, Z. Vagish, “Gamma radiation effects on some optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Breckinridge, A. J. Marker, Proc. SPIE1761, 284–295 (1992).
    [CrossRef]
  6. D. B. Doyle, R. H. Czichy, “Influence of simulated space radiation on optical glasses,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).
    [CrossRef]
  7. A. I. Gusarov, D. B. Doyle, “Radiation-induced wave-front aberrations: a new approach,” Appl. Opt. 37, 643–648 (1998).
    [CrossRef]
  8. F. Lepretre, “Lens assemblies for multispectral camera,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 587–600 (1994).
    [CrossRef]
  9. B. Möbius, M. Magerl, E. Dietzsch, H. Lauth, “Optics for the high-resolution stereo camera in the Mars-94 project,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).
  10. A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. 76, 822–827 (1994).
  11. A. I. Gusarov, D. B. Doyle, G. Ulbrich, “Assessment of dose coefficients as a performance parameter for optical glasses in a space radiation environment,” in Seventh International Symposium on Materials in the Space Environment, SP-399 (European Space Agency, Munich, 1997), pp.67–76.
  12. A. I. Gusarov, D. B. Doyle, A. Hermanne, F. Berghmans, “Index and density changes induced by proton radiation in lanthanum crown glass,” Appl. Phys. Lett. 78, 3196–3198 (2001).
    [CrossRef]
  13. M. Fujimaki, Y. Ohki, J. L. Brebner, S. Roorda, “Fabrication of long-period optical fiber gratings by use of ion implantation,” Opt. Lett. 25, 88–90 (2000).
    [CrossRef]
  14. L. B. Glebov, V. G. Dokuchaev, M. A. Petrov, G. T. Pertovskii, “E′-centers in alkali silicate glasses,” Sov. J. Glass Phys. Chem. 16, 339–344 (1990).
  15. L. B. Glebov, V. G. Docuchaev, G. T. Petrovskii, “The absorption spectra of γ-colored high-purity silicate glasses with a variable concentration of Fe3+,” Fiz. Khim. Stekla 11, 79–86 (1985).
  16. L. B. Glebov, E. N. Boulos, “Absorption of iron and water in the Na2O-CaO-MgO-SiO2 glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions,” J. Non-Cryst. Solids 242, 49–62 (1998).
    [CrossRef]
  17. A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3, 54–114 (1970).
    [CrossRef]
  18. G. Buchmayer, E. Rädelein, G. H. Frischat, W. Beier, B. Speit, “Paramagnetic centers in glasses induced by low Earth orbit space radiation,” J. Non-Cryst. Solids 204, 253–259 (1996).
    [CrossRef]

2001 (1)

A. I. Gusarov, D. B. Doyle, A. Hermanne, F. Berghmans, “Index and density changes induced by proton radiation in lanthanum crown glass,” Appl. Phys. Lett. 78, 3196–3198 (2001).
[CrossRef]

2000 (1)

1998 (2)

A. I. Gusarov, D. B. Doyle, “Radiation-induced wave-front aberrations: a new approach,” Appl. Opt. 37, 643–648 (1998).
[CrossRef]

L. B. Glebov, E. N. Boulos, “Absorption of iron and water in the Na2O-CaO-MgO-SiO2 glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions,” J. Non-Cryst. Solids 242, 49–62 (1998).
[CrossRef]

1996 (1)

G. Buchmayer, E. Rädelein, G. H. Frischat, W. Beier, B. Speit, “Paramagnetic centers in glasses induced by low Earth orbit space radiation,” J. Non-Cryst. Solids 204, 253–259 (1996).
[CrossRef]

1994 (1)

A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. 76, 822–827 (1994).

1990 (1)

L. B. Glebov, V. G. Dokuchaev, M. A. Petrov, G. T. Pertovskii, “E′-centers in alkali silicate glasses,” Sov. J. Glass Phys. Chem. 16, 339–344 (1990).

1985 (1)

L. B. Glebov, V. G. Docuchaev, G. T. Petrovskii, “The absorption spectra of γ-colored high-purity silicate glasses with a variable concentration of Fe3+,” Fiz. Khim. Stekla 11, 79–86 (1985).

1970 (1)

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3, 54–114 (1970).
[CrossRef]

1965 (1)

I. H. Malitson, M. L. Dodge, “Radiation-induced instability in refractive properties of some optical glasses,” J. Opt. Soc. Am. 55, 1583 (1965).

1962 (1)

J. C. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37, 836–841 (1962).
[CrossRef]

Beier, W.

G. Buchmayer, E. Rädelein, G. H. Frischat, W. Beier, B. Speit, “Paramagnetic centers in glasses induced by low Earth orbit space radiation,” J. Non-Cryst. Solids 204, 253–259 (1996).
[CrossRef]

Berghmans, F.

A. I. Gusarov, D. B. Doyle, A. Hermanne, F. Berghmans, “Index and density changes induced by proton radiation in lanthanum crown glass,” Appl. Phys. Lett. 78, 3196–3198 (2001).
[CrossRef]

Bishay, A.

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3, 54–114 (1970).
[CrossRef]

Boehm, L.

M. J. Liepmann, L. Boehm, Z. Vagish, “Gamma radiation effects on some optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Breckinridge, A. J. Marker, Proc. SPIE1761, 284–295 (1992).
[CrossRef]

Boulos, E. N.

L. B. Glebov, E. N. Boulos, “Absorption of iron and water in the Na2O-CaO-MgO-SiO2 glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions,” J. Non-Cryst. Solids 242, 49–62 (1998).
[CrossRef]

Bourrieau, J.

J. Bourrieau, M. Roméro, “Effect of space charged particle environment on optical components and materials,” in Proceedings of the ESA Symposium on Spacecraft Material, ESA SP-145 (European Space Agency, Munich, 1979), pp. 275–285.

Brebner, J. L.

Buchmayer, G.

G. Buchmayer, E. Rädelein, G. H. Frischat, W. Beier, B. Speit, “Paramagnetic centers in glasses induced by low Earth orbit space radiation,” J. Non-Cryst. Solids 204, 253–259 (1996).
[CrossRef]

Czichy, R. H.

D. B. Doyle, R. H. Czichy, “Influence of simulated space radiation on optical glasses,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).
[CrossRef]

Dietzsch, E.

B. Möbius, M. Magerl, E. Dietzsch, H. Lauth, “Optics for the high-resolution stereo camera in the Mars-94 project,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).

Docuchaev, V. G.

L. B. Glebov, V. G. Docuchaev, G. T. Petrovskii, “The absorption spectra of γ-colored high-purity silicate glasses with a variable concentration of Fe3+,” Fiz. Khim. Stekla 11, 79–86 (1985).

Dodge, M. L.

I. H. Malitson, M. L. Dodge, “Radiation-induced instability in refractive properties of some optical glasses,” J. Opt. Soc. Am. 55, 1583 (1965).

Dokuchaev, V. G.

L. B. Glebov, V. G. Dokuchaev, M. A. Petrov, G. T. Pertovskii, “E′-centers in alkali silicate glasses,” Sov. J. Glass Phys. Chem. 16, 339–344 (1990).

Doyle, D. B.

A. I. Gusarov, D. B. Doyle, A. Hermanne, F. Berghmans, “Index and density changes induced by proton radiation in lanthanum crown glass,” Appl. Phys. Lett. 78, 3196–3198 (2001).
[CrossRef]

A. I. Gusarov, D. B. Doyle, “Radiation-induced wave-front aberrations: a new approach,” Appl. Opt. 37, 643–648 (1998).
[CrossRef]

A. I. Gusarov, D. B. Doyle, G. Ulbrich, “Assessment of dose coefficients as a performance parameter for optical glasses in a space radiation environment,” in Seventh International Symposium on Materials in the Space Environment, SP-399 (European Space Agency, Munich, 1997), pp.67–76.

D. B. Doyle, R. H. Czichy, “Influence of simulated space radiation on optical glasses,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).
[CrossRef]

Frischat, G. H.

G. Buchmayer, E. Rädelein, G. H. Frischat, W. Beier, B. Speit, “Paramagnetic centers in glasses induced by low Earth orbit space radiation,” J. Non-Cryst. Solids 204, 253–259 (1996).
[CrossRef]

Fujimaki, M.

Glebov, L. B.

L. B. Glebov, E. N. Boulos, “Absorption of iron and water in the Na2O-CaO-MgO-SiO2 glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions,” J. Non-Cryst. Solids 242, 49–62 (1998).
[CrossRef]

L. B. Glebov, V. G. Dokuchaev, M. A. Petrov, G. T. Pertovskii, “E′-centers in alkali silicate glasses,” Sov. J. Glass Phys. Chem. 16, 339–344 (1990).

L. B. Glebov, V. G. Docuchaev, G. T. Petrovskii, “The absorption spectra of γ-colored high-purity silicate glasses with a variable concentration of Fe3+,” Fiz. Khim. Stekla 11, 79–86 (1985).

Gusarov, A. I.

A. I. Gusarov, D. B. Doyle, A. Hermanne, F. Berghmans, “Index and density changes induced by proton radiation in lanthanum crown glass,” Appl. Phys. Lett. 78, 3196–3198 (2001).
[CrossRef]

A. I. Gusarov, D. B. Doyle, “Radiation-induced wave-front aberrations: a new approach,” Appl. Opt. 37, 643–648 (1998).
[CrossRef]

A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. 76, 822–827 (1994).

A. I. Gusarov, D. B. Doyle, G. Ulbrich, “Assessment of dose coefficients as a performance parameter for optical glasses in a space radiation environment,” in Seventh International Symposium on Materials in the Space Environment, SP-399 (European Space Agency, Munich, 1997), pp.67–76.

Hermanne, A.

A. I. Gusarov, D. B. Doyle, A. Hermanne, F. Berghmans, “Index and density changes induced by proton radiation in lanthanum crown glass,” Appl. Phys. Lett. 78, 3196–3198 (2001).
[CrossRef]

Ignat’ev, F. N.

A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. 76, 822–827 (1994).

Lauth, H.

B. Möbius, M. Magerl, E. Dietzsch, H. Lauth, “Optics for the high-resolution stereo camera in the Mars-94 project,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).

Lepretre, F.

F. Lepretre, “Lens assemblies for multispectral camera,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 587–600 (1994).
[CrossRef]

Liepmann, M. J.

M. J. Liepmann, L. Boehm, Z. Vagish, “Gamma radiation effects on some optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Breckinridge, A. J. Marker, Proc. SPIE1761, 284–295 (1992).
[CrossRef]

Magerl, M.

B. Möbius, M. Magerl, E. Dietzsch, H. Lauth, “Optics for the high-resolution stereo camera in the Mars-94 project,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).

Malitson, I. H.

I. H. Malitson, M. L. Dodge, “Radiation-induced instability in refractive properties of some optical glasses,” J. Opt. Soc. Am. 55, 1583 (1965).

Möbius, B.

B. Möbius, M. Magerl, E. Dietzsch, H. Lauth, “Optics for the high-resolution stereo camera in the Mars-94 project,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).

Ohki, Y.

Pertovskii, G. T.

L. B. Glebov, V. G. Dokuchaev, M. A. Petrov, G. T. Pertovskii, “E′-centers in alkali silicate glasses,” Sov. J. Glass Phys. Chem. 16, 339–344 (1990).

Petrone, P.

P. R. Silverglate, E. F. Zalewski, P. Petrone, “Proton-induced radiation effects on optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Breckinridge, A. J. Marker, eds., Proc. SPIE1761, 46–57 (1992).
[CrossRef]

Petrov, M. A.

L. B. Glebov, V. G. Dokuchaev, M. A. Petrov, G. T. Pertovskii, “E′-centers in alkali silicate glasses,” Sov. J. Glass Phys. Chem. 16, 339–344 (1990).

Petrovskii, G. T.

L. B. Glebov, V. G. Docuchaev, G. T. Petrovskii, “The absorption spectra of γ-colored high-purity silicate glasses with a variable concentration of Fe3+,” Fiz. Khim. Stekla 11, 79–86 (1985).

Rädelein, E.

G. Buchmayer, E. Rädelein, G. H. Frischat, W. Beier, B. Speit, “Paramagnetic centers in glasses induced by low Earth orbit space radiation,” J. Non-Cryst. Solids 204, 253–259 (1996).
[CrossRef]

Roméro, M.

J. Bourrieau, M. Roméro, “Effect of space charged particle environment on optical components and materials,” in Proceedings of the ESA Symposium on Spacecraft Material, ESA SP-145 (European Space Agency, Munich, 1979), pp. 275–285.

Roorda, S.

Silverglate, P. R.

P. R. Silverglate, E. F. Zalewski, P. Petrone, “Proton-induced radiation effects on optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Breckinridge, A. J. Marker, eds., Proc. SPIE1761, 46–57 (1992).
[CrossRef]

Speit, B.

G. Buchmayer, E. Rädelein, G. H. Frischat, W. Beier, B. Speit, “Paramagnetic centers in glasses induced by low Earth orbit space radiation,” J. Non-Cryst. Solids 204, 253–259 (1996).
[CrossRef]

Stroud, J. C.

J. C. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37, 836–841 (1962).
[CrossRef]

Ulbrich, G.

A. I. Gusarov, D. B. Doyle, G. Ulbrich, “Assessment of dose coefficients as a performance parameter for optical glasses in a space radiation environment,” in Seventh International Symposium on Materials in the Space Environment, SP-399 (European Space Agency, Munich, 1997), pp.67–76.

Vagish, Z.

M. J. Liepmann, L. Boehm, Z. Vagish, “Gamma radiation effects on some optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Breckinridge, A. J. Marker, Proc. SPIE1761, 284–295 (1992).
[CrossRef]

Volchek, A. O.

A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. 76, 822–827 (1994).

Zalewski, E. F.

P. R. Silverglate, E. F. Zalewski, P. Petrone, “Proton-induced radiation effects on optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Breckinridge, A. J. Marker, eds., Proc. SPIE1761, 46–57 (1992).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. I. Gusarov, D. B. Doyle, A. Hermanne, F. Berghmans, “Index and density changes induced by proton radiation in lanthanum crown glass,” Appl. Phys. Lett. 78, 3196–3198 (2001).
[CrossRef]

Fiz. Khim. Stekla (1)

L. B. Glebov, V. G. Docuchaev, G. T. Petrovskii, “The absorption spectra of γ-colored high-purity silicate glasses with a variable concentration of Fe3+,” Fiz. Khim. Stekla 11, 79–86 (1985).

J. Chem. Phys. (1)

J. C. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37, 836–841 (1962).
[CrossRef]

J. Non-Cryst. Solids (3)

L. B. Glebov, E. N. Boulos, “Absorption of iron and water in the Na2O-CaO-MgO-SiO2 glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions,” J. Non-Cryst. Solids 242, 49–62 (1998).
[CrossRef]

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3, 54–114 (1970).
[CrossRef]

G. Buchmayer, E. Rädelein, G. H. Frischat, W. Beier, B. Speit, “Paramagnetic centers in glasses induced by low Earth orbit space radiation,” J. Non-Cryst. Solids 204, 253–259 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

I. H. Malitson, M. L. Dodge, “Radiation-induced instability in refractive properties of some optical glasses,” J. Opt. Soc. Am. 55, 1583 (1965).

Opt. Lett. (1)

Opt. Spectrosc. (1)

A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. 76, 822–827 (1994).

Sov. J. Glass Phys. Chem. (1)

L. B. Glebov, V. G. Dokuchaev, M. A. Petrov, G. T. Pertovskii, “E′-centers in alkali silicate glasses,” Sov. J. Glass Phys. Chem. 16, 339–344 (1990).

Other (7)

A. I. Gusarov, D. B. Doyle, G. Ulbrich, “Assessment of dose coefficients as a performance parameter for optical glasses in a space radiation environment,” in Seventh International Symposium on Materials in the Space Environment, SP-399 (European Space Agency, Munich, 1997), pp.67–76.

J. Bourrieau, M. Roméro, “Effect of space charged particle environment on optical components and materials,” in Proceedings of the ESA Symposium on Spacecraft Material, ESA SP-145 (European Space Agency, Munich, 1979), pp. 275–285.

P. R. Silverglate, E. F. Zalewski, P. Petrone, “Proton-induced radiation effects on optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Breckinridge, A. J. Marker, eds., Proc. SPIE1761, 46–57 (1992).
[CrossRef]

M. J. Liepmann, L. Boehm, Z. Vagish, “Gamma radiation effects on some optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Breckinridge, A. J. Marker, Proc. SPIE1761, 284–295 (1992).
[CrossRef]

D. B. Doyle, R. H. Czichy, “Influence of simulated space radiation on optical glasses,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).
[CrossRef]

F. Lepretre, “Lens assemblies for multispectral camera,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 587–600 (1994).
[CrossRef]

B. Möbius, M. Magerl, E. Dietzsch, H. Lauth, “Optics for the high-resolution stereo camera in the Mars-94 project,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the proton irradiation geometry. The hatched area represents the irradiated part of the sample, and the left-hand graph indicates the diammetrical dose distribution averaged over the sample thickness. The effect of surface dilatation uz is strongly exaggerated.

Fig. 2
Fig. 2

Transmission wave-front map obtained on a pristine sample.

Fig. 3
Fig. 3

Transmission wave-front difference maps of BK7-series glass samples irradiated with (a)–(c) 27-MeV and (d)–(f) 38-MeV protons. The measurements were performed 13 days after irradiation. The proton fluences were (a) -1.85 × 1012, (b) -2.35 × 1012, (c) -3.1 × 1012, (d) 2.2 × 1012, (e) -2.25 × 1012, (f) -2.9 × 1012 p+/cm2, corresponding to an average ionizing dose of 0.5–0.8 Mrad.

Fig. 4
Fig. 4

Histogram representation of the wave-front map [Fig. 3(a)] for BK7. The peaks of the bimodal distribution correspond to the central (irradiated) and the peripheral (shielded) parts of the sample.

Fig. 5
Fig. 5

Postproton irradiation behavior of the OPD: diamonds, BK7 (dose 0.54 Mrad); squares, BK7G18 (0.53 Mrad); open triangles, BK7G25 (0.68 Mrad); asterisks, LaK9; solid triangles, LaK9G15 (0.65 Mrad); solid circles, LaK9G15 (0.18 Mrad).

Fig. 6
Fig. 6

Postirradiation behavior of the dose coefficients DC: (a) BK7, (b) BK7G18, (c) BK7G25. The curves correspond to the following: diamonds, Ep =27 MeV; □, Ep = 38 MeV; crosses, Co60 source, D = 400/800 krad.

Fig. 7
Fig. 7

Spectra of 800-krad γ-radiation-dose-induced absorption coefficient for BK7 glass: 1, 2 h after irradiation; 2, 24 days after irradiation; 3, difference between 2 and 1.

Fig. 8
Fig. 8

Comparison of induced absorption produced by γ and proton radiation: curves 1, 2, 38-MeV protons for doses 0.4 and 0.95 Mrad, respectively; curves 3–6, Co60 γ radiation with doses of 50, 100, 200, and 400 krad. Measurements were performed 4 months after irradiation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔΛr=n0-1uzr, z=0+0LdzΔnr, z+n0-1uzr, z=L,
ΔΛr=LΔnΘR-r,
Δnλ=βλD,
Δnλ=λ2π2dλ Δa(λ)λ2-λ2,

Metrics