Abstract

The characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors are discussed. This sensor is able to detect macro bending with the transmitted power variation of the first side mode in the blazed fiber Bragg grating. Since an incident ray experiences different variations of tilt angles with respect to bending direction, the blazed fiber Bragg grating has different coupling efficiencies of the first side mode, which can be reduced considerably in the case of twisted blazed fiber Bragg gratings.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Habel, H. Polster, “The influence of cementitious building material on polymetric surfaces of embedded optical fibers for sensors,” J. Lightwave Technol. 13, 1324–1330 (1995).
    [CrossRef]
  2. A. D. Kersey, A. Dandridge, M. A. Davis, “Low-crosstalk code-division multiplexed interferometric array,” Electron. Lett. 28, 351–352 (1992).
    [CrossRef]
  3. V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef] [PubMed]
  4. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
    [CrossRef]
  5. J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
    [CrossRef]
  6. W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
    [CrossRef]
  7. D. Marcuse, “Field deformation and loss caused by curvature of optical fiber,” J. Opt. Soc. Am. 66, 311–320 (1976).
    [CrossRef]
  8. G. L. Tangonan, H. P. Hsu, V. Jones, J. Pikulski, “Bend loss measurements for small mode field diameter fibers,” Electron. Lett. 25, 142–143 (1989).
    [CrossRef]
  9. L. Faustini, G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671–679 (1997).
    [CrossRef]
  10. H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544–551 (1992).
    [CrossRef]
  11. R. C. Gauthier, C. Ross, “Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor,” Appl. Opt. 36, 6264–6273 (1997).
    [CrossRef]
  12. D. Donlagić, B. Culshaw, “Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems,” J. Lightwave Technol. 18, 334–342 (2000).
    [CrossRef]
  13. S. Baek, Y. Jeong, B. Lee, “A fiber-optic sensor aided by a metal capillary splice for macro-bending detection,” in Proceedings of Photonics Conference 2000, Cheju, Korea, 8–10 Nov. 2000 (Korean Institute of Electrical Engineers, Cheju, Korea, 2000), pp. 601–602.
  14. K. Watanabe, K. Tajima, Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E83-C, 309–314 (2000).
  15. Y. Jeong, S. Baek, B. Lee, “A self-referencing fiber-optic sensor for macro-bending detection immune to temperature and strain perturbations,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, ed., Proc. SPIE4185, 700–703 (2000).
  16. T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
    [CrossRef]
  17. R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electron. Lett. 29, 154–156 (1993).
    [CrossRef]
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  19. K. S. Lee, T. Erdogan, “Mode coupling in spiral fibre gratings,” Electron. Lett. 37, 156–157 (2001).
    [CrossRef]

2001 (1)

K. S. Lee, T. Erdogan, “Mode coupling in spiral fibre gratings,” Electron. Lett. 37, 156–157 (2001).
[CrossRef]

2000 (2)

D. Donlagić, B. Culshaw, “Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems,” J. Lightwave Technol. 18, 334–342 (2000).
[CrossRef]

K. Watanabe, K. Tajima, Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E83-C, 309–314 (2000).

1997 (3)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

R. C. Gauthier, C. Ross, “Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor,” Appl. Opt. 36, 6264–6273 (1997).
[CrossRef]

L. Faustini, G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

1996 (3)

V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef] [PubMed]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
[CrossRef]

1995 (2)

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

W. R. Habel, H. Polster, “The influence of cementitious building material on polymetric surfaces of embedded optical fibers for sensors,” J. Lightwave Technol. 13, 1324–1330 (1995).
[CrossRef]

1993 (1)

R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

1992 (2)

A. D. Kersey, A. Dandridge, M. A. Davis, “Low-crosstalk code-division multiplexed interferometric array,” Electron. Lett. 28, 351–352 (1992).
[CrossRef]

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544–551 (1992).
[CrossRef]

1989 (1)

G. L. Tangonan, H. P. Hsu, V. Jones, J. Pikulski, “Bend loss measurements for small mode field diameter fibers,” Electron. Lett. 25, 142–143 (1989).
[CrossRef]

1978 (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
[CrossRef]

1976 (1)

Baek, S.

S. Baek, Y. Jeong, B. Lee, “A fiber-optic sensor aided by a metal capillary splice for macro-bending detection,” in Proceedings of Photonics Conference 2000, Cheju, Korea, 8–10 Nov. 2000 (Korean Institute of Electrical Engineers, Cheju, Korea, 2000), pp. 601–602.

Y. Jeong, S. Baek, B. Lee, “A self-referencing fiber-optic sensor for macro-bending detection immune to temperature and strain perturbations,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, ed., Proc. SPIE4185, 700–703 (2000).

Berthold, J. W.

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

Bhatia, V.

Campbell, R. J.

R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

Culshaw, B.

Dandridge, A.

A. D. Kersey, A. Dandridge, M. A. Davis, “Low-crosstalk code-division multiplexed interferometric array,” Electron. Lett. 28, 351–352 (1992).
[CrossRef]

Davis, M. A.

A. D. Kersey, A. Dandridge, M. A. Davis, “Low-crosstalk code-division multiplexed interferometric array,” Electron. Lett. 28, 351–352 (1992).
[CrossRef]

Donlagic, D.

Erdogan, T.

K. S. Lee, T. Erdogan, “Mode coupling in spiral fibre gratings,” Electron. Lett. 37, 156–157 (2001).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
[CrossRef]

Faustini, L.

L. Faustini, G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

Gambling, W. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
[CrossRef]

Gauthier, R. C.

Habel, W. R.

W. R. Habel, H. Polster, “The influence of cementitious building material on polymetric surfaces of embedded optical fibers for sensors,” J. Lightwave Technol. 13, 1324–1330 (1995).
[CrossRef]

Hsu, H. P.

G. L. Tangonan, H. P. Hsu, V. Jones, J. Pikulski, “Bend loss measurements for small mode field diameter fibers,” Electron. Lett. 25, 142–143 (1989).
[CrossRef]

Jeong, Y.

Y. Jeong, S. Baek, B. Lee, “A self-referencing fiber-optic sensor for macro-bending detection immune to temperature and strain perturbations,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, ed., Proc. SPIE4185, 700–703 (2000).

S. Baek, Y. Jeong, B. Lee, “A fiber-optic sensor aided by a metal capillary splice for macro-bending detection,” in Proceedings of Photonics Conference 2000, Cheju, Korea, 8–10 Nov. 2000 (Korean Institute of Electrical Engineers, Cheju, Korea, 2000), pp. 601–602.

Jones, V.

G. L. Tangonan, H. P. Hsu, V. Jones, J. Pikulski, “Bend loss measurements for small mode field diameter fibers,” Electron. Lett. 25, 142–143 (1989).
[CrossRef]

Kashyap, R.

R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

Kersey, A. D.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

A. D. Kersey, A. Dandridge, M. A. Davis, “Low-crosstalk code-division multiplexed interferometric array,” Electron. Lett. 28, 351–352 (1992).
[CrossRef]

Kubota, Y.

K. Watanabe, K. Tajima, Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E83-C, 309–314 (2000).

Lee, B.

S. Baek, Y. Jeong, B. Lee, “A fiber-optic sensor aided by a metal capillary splice for macro-bending detection,” in Proceedings of Photonics Conference 2000, Cheju, Korea, 8–10 Nov. 2000 (Korean Institute of Electrical Engineers, Cheju, Korea, 2000), pp. 601–602.

Y. Jeong, S. Baek, B. Lee, “A self-referencing fiber-optic sensor for macro-bending detection immune to temperature and strain perturbations,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, ed., Proc. SPIE4185, 700–703 (2000).

Lee, K. S.

K. S. Lee, T. Erdogan, “Mode coupling in spiral fibre gratings,” Electron. Lett. 37, 156–157 (2001).
[CrossRef]

Marcuse, D.

Martini, G.

L. Faustini, G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

Matsumura, H.

W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
[CrossRef]

Patrick, H. J.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Pikulski, J.

G. L. Tangonan, H. P. Hsu, V. Jones, J. Pikulski, “Bend loss measurements for small mode field diameter fibers,” Electron. Lett. 25, 142–143 (1989).
[CrossRef]

Polster, H.

W. R. Habel, H. Polster, “The influence of cementitious building material on polymetric surfaces of embedded optical fibers for sensors,” J. Lightwave Technol. 13, 1324–1330 (1995).
[CrossRef]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
[CrossRef]

Renner, H.

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544–551 (1992).
[CrossRef]

Ross, C.

Sipe, J. E.

Tajima, K.

K. Watanabe, K. Tajima, Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E83-C, 309–314 (2000).

Tangonan, G. L.

G. L. Tangonan, H. P. Hsu, V. Jones, J. Pikulski, “Bend loss measurements for small mode field diameter fibers,” Electron. Lett. 25, 142–143 (1989).
[CrossRef]

Vengsarkar, A. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef] [PubMed]

Watanabe, K.

K. Watanabe, K. Tajima, Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E83-C, 309–314 (2000).

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Wyatt, R.

R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (5)

R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

A. D. Kersey, A. Dandridge, M. A. Davis, “Low-crosstalk code-division multiplexed interferometric array,” Electron. Lett. 28, 351–352 (1992).
[CrossRef]

W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
[CrossRef]

G. L. Tangonan, H. P. Hsu, V. Jones, J. Pikulski, “Bend loss measurements for small mode field diameter fibers,” Electron. Lett. 25, 142–143 (1989).
[CrossRef]

K. S. Lee, T. Erdogan, “Mode coupling in spiral fibre gratings,” Electron. Lett. 37, 156–157 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

IEICE Trans. Electron. (1)

K. Watanabe, K. Tajima, Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E83-C, 309–314 (2000).

J. Lightwave Technol. (6)

D. Donlagić, B. Culshaw, “Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems,” J. Lightwave Technol. 18, 334–342 (2000).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

W. R. Habel, H. Polster, “The influence of cementitious building material on polymetric surfaces of embedded optical fibers for sensors,” J. Lightwave Technol. 13, 1324–1330 (1995).
[CrossRef]

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

L. Faustini, G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544–551 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Other (2)

S. Baek, Y. Jeong, B. Lee, “A fiber-optic sensor aided by a metal capillary splice for macro-bending detection,” in Proceedings of Photonics Conference 2000, Cheju, Korea, 8–10 Nov. 2000 (Korean Institute of Electrical Engineers, Cheju, Korea, 2000), pp. 601–602.

Y. Jeong, S. Baek, B. Lee, “A self-referencing fiber-optic sensor for macro-bending detection immune to temperature and strain perturbations,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, ed., Proc. SPIE4185, 700–703 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of a blazed fiber Bragg grating with the associated parameters. θ represents the tilt angle of the blazed fiber Bragg grating; Λg and Λ, the grating periods with respect to the primed and the unprimed axes, respectively.

Fig. 2
Fig. 2

Transmission and reflection spectra of a blazed fiber Bragg grating with a tilt angle of 1.5°. The side modes do not appear in the reflection spectrum.

Fig. 3
Fig. 3

Transmission spectra for various tilt angles. As the tilt angle becomes larger, the resonance wavelength shifts to longer wavelength and the main-mode transmission dip becomes shallower, but the transmission dips of the side modes become deeper.

Fig. 4
Fig. 4

Schematic diagram of a bent blazed fiber Bragg grating. The bending of a fiber results in an effective variation of a tilt angle of a blazed fiber Bragg grating.

Fig. 5
Fig. 5

Classification of various types of macro bending. Three types of macro bending exist, with respect to the bending direction on the tilt plane. Type A shown in (a) has the largest variation of tilt angle among the three types; type B shown in (b) has an intermediate variation; and type C, as shown in (c), has the smallest variation in tilt angle.

Fig. 6
Fig. 6

Fabrication setup for blazed fiber Bragg gratings. The tilt angle is determined by the angle of the rotating plate.

Fig. 7
Fig. 7

Transmission spectra of blazed fiber Bragg gratings with macro bending are shown in (a). The blazed fiber Bragg grating has a length of 2 cm, a tilt angle of 1°, and is bending type A, as shown in Fig. 5(a). As the radius of curvature of bending becomes smaller, the transmission power of the first side mode becomes stronger, as shown in (b), but that of the main mode remains nearly unchanged, as shown in (c).

Fig. 8
Fig. 8

Transmission spectra of blazed fiber Bragg gratings with macro bending are shown in (a). The blazed fiber Bragg grating has a length of 2 cm, a tilt angle of 2°, and is bending type B, as shown in Fig. 5(b). As the radius of curvature of bending becomes smaller, the transmission power of the first side mode becomes stronger, as shown in (b), but that of the main mode remains nearly unchanged, as shown in (c).

Fig. 9
Fig. 9

Transmitted power variations based on the radius of curvature with respect to bending type, as classified in Fig. 5. The case of a tilt angle of 1° is shown in (a) and a tilt angle of 2° in (b).

Fig. 10
Fig. 10

Twisting a single-mode fiber. A twisted blazed fiber Bragg grating is fabricated with a fiber that has been initially twisted.

Fig. 11
Fig. 11

Transmitted power variations of the twisted blazed fiber Bragg grating according to the bending types classified in Fig. 5. This grating has a length of 2 cm; the tilt angles of (a) and (b) are 1° and 2°, respectively. The grating is twisted six turns per 16 cm, which corresponds to an effective twist angle of ∼275° through the length of blazed grating.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δncox, z=δncoz¯1+ν cos2πΛg z+ϕz.
K±z=σz+2κ±zcos2πΛ z+ϕz cos θ,
Λm=2neffΛcos θ,
ΔPBdB10log PB-log P0,

Metrics