Abstract

Coherent laser radar systems in the mid-IR wavelength region can have advantages in low-altitude environments because they are less sensitive to scattering, turbulence, and humidity, which can affect shorter- or longer-wavelength systems. We describe a coherent laser radar at 3.6 µm based on a single-frequency optical parametric oscillator and demonstrate the system over short ranges outdoors. The system was used to make micro-Doppler measurements from idling trucks that were processed to give surface vibration spectra.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. E. Byvik, “Coherent laser radar at 1.06 µm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987).
    [CrossRef] [PubMed]
  2. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
    [CrossRef] [PubMed]
  3. R. C. Stoneman, S. W. Henderson, “High-power eyesafe laser transmitter for microDoppler coherent lidar,” Proc. IEEE 907, 342–343 (2001).
  4. C. J. Karlsson, F. A. A. Olson, D. Letalik, M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 µm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
    [CrossRef]
  5. P. Lutzmann, R. Frank, R. R. Ebert, “Laser radar based vibration imaging of remote objects,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 436–443 (2000).
  6. F. Hanson, “Coherent laser radar performance in littoral environments—a statistical analysis based on weather observations,” Opt. Eng. 39, 3044–3052 (2000).
    [CrossRef]
  7. S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.
  8. K. Schneider, P. Kramper, S. Schiller, J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293–1295 (1997).
    [CrossRef]
  9. M. Arbore, T. McHugh, “0.5 watt, single-frequency, 1510–1630 nm, pump- and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics, Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 520–521.
  10. J. H. Marquardt, R. W. Mackes, D. D. Smith, “Single-mode, tunable output from a midwave-infrared-seeded optical parametric oscillator system,” Appl. Opt. 41, 1163–1168 (2002).
    [CrossRef] [PubMed]
  11. F. Hanson, P. Poirier, M. A. Arbore, “Single-frequency mid-infrared optical parametric oscillator source for coherent laser radar,” Opt. Lett. 26, 1794–1796 (2001).
    [CrossRef]

2002 (1)

2001 (2)

F. Hanson, P. Poirier, M. A. Arbore, “Single-frequency mid-infrared optical parametric oscillator source for coherent laser radar,” Opt. Lett. 26, 1794–1796 (2001).
[CrossRef]

R. C. Stoneman, S. W. Henderson, “High-power eyesafe laser transmitter for microDoppler coherent lidar,” Proc. IEEE 907, 342–343 (2001).

2000 (2)

F. Hanson, “Coherent laser radar performance in littoral environments—a statistical analysis based on weather observations,” Opt. Eng. 39, 3044–3052 (2000).
[CrossRef]

C. J. Karlsson, F. A. A. Olson, D. Letalik, M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 µm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
[CrossRef]

1997 (1)

1991 (1)

1987 (1)

Abreu, L. W.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Anderson, G. P.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Arbore, M.

M. Arbore, T. McHugh, “0.5 watt, single-frequency, 1510–1630 nm, pump- and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics, Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 520–521.

Arbore, M. A.

Byer, R. L.

Byvik, C. E.

Chetwynd, J. H.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Clough, S. A.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Ebert, R. R.

P. Lutzmann, R. Frank, R. R. Ebert, “Laser radar based vibration imaging of remote objects,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 436–443 (2000).

Frank, R.

P. Lutzmann, R. Frank, R. R. Ebert, “Laser radar based vibration imaging of remote objects,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 436–443 (2000).

Hale, C. P.

Hall, L. A.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Hanson, F.

F. Hanson, P. Poirier, M. A. Arbore, “Single-frequency mid-infrared optical parametric oscillator source for coherent laser radar,” Opt. Lett. 26, 1794–1796 (2001).
[CrossRef]

F. Hanson, “Coherent laser radar performance in littoral environments—a statistical analysis based on weather observations,” Opt. Eng. 39, 3044–3052 (2000).
[CrossRef]

Harris, M.

Henderson, S. W.

R. C. Stoneman, S. W. Henderson, “High-power eyesafe laser transmitter for microDoppler coherent lidar,” Proc. IEEE 907, 342–343 (2001).

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
[CrossRef] [PubMed]

Huffaker, A. V.

Kane, T. J.

Karlsson, C. J.

Kavaya, M. J.

Kneizys, F. X.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Kozlovsky, W. J.

Kramper, P.

Letalik, D.

Lutzmann, P.

P. Lutzmann, R. Frank, R. R. Ebert, “Laser radar based vibration imaging of remote objects,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 436–443 (2000).

Mackes, R. W.

Magee, J. R.

Marquardt, J. H.

McHugh, T.

M. Arbore, T. McHugh, “0.5 watt, single-frequency, 1510–1630 nm, pump- and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics, Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 520–521.

Mlynek, J.

Olson, F. A. A.

Poirier, P.

Schiller, S.

Schneider, K.

Shettle, E. P.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Smith, D. D.

Stoneman, R. C.

R. C. Stoneman, S. W. Henderson, “High-power eyesafe laser transmitter for microDoppler coherent lidar,” Proc. IEEE 907, 342–343 (2001).

Worsham, R. D.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Appl. Opt. (2)

Opt. Eng. (1)

F. Hanson, “Coherent laser radar performance in littoral environments—a statistical analysis based on weather observations,” Opt. Eng. 39, 3044–3052 (2000).
[CrossRef]

Opt. Lett. (4)

Proc. IEEE (1)

R. C. Stoneman, S. W. Henderson, “High-power eyesafe laser transmitter for microDoppler coherent lidar,” Proc. IEEE 907, 342–343 (2001).

Other (3)

P. Lutzmann, R. Frank, R. R. Ebert, “Laser radar based vibration imaging of remote objects,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 436–443 (2000).

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of the International Radiation Symposium ’88, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

M. Arbore, T. McHugh, “0.5 watt, single-frequency, 1510–1630 nm, pump- and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics, Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 520–521.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fixed-path transmission over 20 km at low altitude calculated for monochromatic laser wavelengths in a tropical maritime atmosphere as a function of meteorological range.

Fig. 2
Fig. 2

Low-altitude atmospheric transmission spectrum calculated with fascod3p for a 4-km path in tropical atmosphere, Navy maritime aerosol with the ICSTL parameter equal to 3.

Fig. 3
Fig. 3

Coherent heterodyne laser radar optical setup. BS1 and BS2, 50–50 beam splitters; P, 10-cm telescope primary; S1 and S2, telescope secondary lenses for transmit and receive; FOV, an iris that sets the field of view for a visible camera placed after S2; AO, acousto-optic frequency shifter.

Fig. 4
Fig. 4

Top, transmit beam intensity gray-scale map showing defect in telescope primary. Bottom, horizontal profile through dashed line.

Fig. 5
Fig. 5

Power spectrum of vibration velocity for Ford Explorer at 800-rpm idle (scaled by 4 × and offset) and Toyota 4Runner at 700-rpm idle.

Fig. 6
Fig. 6

Log power spectrum of acceleration for the Toyota 4Runner at 700-rpm idle measured with laser radar and accelerometer.

Fig. 7
Fig. 7

Calculated range R LO where band-integrated LO frequency noise power from the OPO source is equal to signal power P T from a vibrating target for given vibration amplitudes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Sd2f=λ/4 πf2SD2f,
Sν2f=λ2SD2f/4,
Sa2f=2πfλ2SD2f/4.
SD2f=ST2+Satm2+4SLO2 sin2πfτ+Sn2,
RLO=sin-1PT/SLO2 Δf1/2c4πfν.

Metrics