Abstract

We have developed a three-dimensional imaging laser radar featuring 3-cm range resolution and single-photon sensitivity. This prototype direct-detection laser radar employs compact, all-solid-state technology for the laser and detector array. The source is a Nd:YAG microchip laser that is diode pumped, passively Q-switched, and frequency doubled. The detector is a gated, passively quenched, two-dimensional array of silicon avalanche photodiodes operating in Geiger mode. After describing the system in detail, we present a three-dimensional image, derive performance characteristics, and discuss our plans for future imaging three-dimensional laser radars.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Bachman, Laser Radar Systems and Techniques (Artech House, Norwood, Mass., 1979).
  2. J. J. Zayhowski, C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
    [CrossRef] [PubMed]
  3. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).
  4. J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 29, 841–846 (1998).
    [CrossRef]
  5. J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers,” Opt. Lett. 21, 588–590 (1996).
    [CrossRef] [PubMed]
  6. J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers: errata,” Opt. Lett. 21, 1618 (1996),
    [CrossRef] [PubMed]
  7. J. J. Zayhowski, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22, 169–171 (1997).
    [CrossRef] [PubMed]

2002 (1)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).

1998 (1)

J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 29, 841–846 (1998).
[CrossRef]

1997 (1)

1996 (2)

1994 (1)

Aull, B. F.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).

Bachman, C. G.

C. G. Bachman, Laser Radar Systems and Techniques (Artech House, Norwood, Mass., 1979).

Daniels, P. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).

Dill, C.

Felton, B. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).

Heinrichs, R. M.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).

Landers, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).

Loomis, A. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).

Young, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).

Zayhowski, J. J.

Lincoln Lab. J. (1)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).

Opt. Lett. (4)

Rev. Laser Eng. (1)

J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 29, 841–846 (1998).
[CrossRef]

Other (1)

C. G. Bachman, Laser Radar Systems and Techniques (Artech House, Norwood, Mass., 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Preamplifier circuit diagram for each of the 16 detectors in the 4 × 4 APD array. Cs1 and Cs2, measured stray capacitances (Cs1 + Cs2 = 3.25 pF); op-amp, operational amplifier (see text).

Fig. 2
Fig. 2

Optical layout of the 3-D laser radar. QWP, quarter-wave plate; PBS, polarizing beam splitter; HWP, half-wave plate.

Fig. 3
Fig. 3

Images of a Chevrolet Astro van obtained with the 3-D ladar prototype. The single-frame image (upper left) clearly shows the features of the van. The other three versions result from range-coincidence processing on 3 (upper-right), 10 (lower-left), and 110 (lower-right) frames. Range is encoded in the gray scale, with the nearest ranges being darker. The 3-D images were collected from a single vantage point, 60 m in front of the vehicle, in midday light on a sunny day. The range resolution is approximately 3 cm (see text).

Fig. 4
Fig. 4

Image of the Chevy van computed from range-coincidence processing on 110 frames and shown in other formats. In the upper left is a 3-D model rendered from the angle–angle-range data. The other three renditions are point clouds viewed after various amounts of computer rotation. Rotation of the image in software better reveals shapes, sizes, and relative positions of different parts of the van.

Fig. 5
Fig. 5

Firing probability versus time bin number when the detector array is illuminated with incoherent light. The straight line is a least-squares fit to the data of this log-linear graph (see text). The exponential dependence indicates that firing of Geiger-mode APDs follows Poisson statistics.

Metrics