Abstract

The lidar of the Radio Science Center for Space and Atmosphere (RASC; Kyoto, Japan) makes use of two pure rotational Raman (RR) signals for both the measurement of the atmospheric temperature profile and the derivation of a temperature-independent Raman reference signal. The latter technique is new and leads to significantly smaller measurement uncertainties compared with the commonly used vibrational Raman lidar technique. For the measurement of temperature, particle extinction coefficient, particle backscatter coefficient, and humidity simultaneously, only four lidar signals are needed: the elastic Cabannes backscatter signal, two RR signals, and the vibrational Raman water vapor signal. The RASC lidar provides RR signals of unprecedented intensity. Although only 25% of the RR signal intensities can be used with the present data-acquisition electronics, the 1-s statistical uncertainty of nighttime temperature measurements is lower than for previous systems and is <1K up to 11-km height for, e.g., a resolution of 500 m and 9 min. In addition, RR measurements in daytime also have become feasible.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
    [CrossRef]
  2. S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
    [CrossRef]
  3. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” Appl. Meteorol. 11, 108–112 (1972).
    [CrossRef]
  4. J. Cooney, M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976).
    [CrossRef] [PubMed]
  5. R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
    [CrossRef]
  6. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [CrossRef] [PubMed]
  7. D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  8. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef] [PubMed]
  9. C. R. Philbrick, “Raman lidar capability to measure tropospheric properties,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwenmer, eds., NASA/CP-1998-207671/PT1 (National Aeronautics and Space Administration, Langley Research Center, Hampton, Va.), pp. 289–292.
  10. A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar using an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
    [CrossRef]
  11. A. Behrendt, J. Reichardt, A. Dörnbrack, C. Weitkamp, “Leewave PSCs in Northern Scandinavia between 22 and 26 January, 1998: lidar measurements of temperature and optical particle properties above esrange and mesoscale model analyses,” in Stratospheric Ozone 1999–Proceedings of the Fifth European Symposium, N. R. P. Harris, M. Guirlet, G. T. Amanatidis, eds., Air Pollution Research Rep. 73 (European Commission, Brussels, 2000), pp. 149–152.
  12. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
    [CrossRef] [PubMed]
  13. The formula for calculating rotational Raman signal intensities can be found, e.g., in A. Behrendt, T. Nakamura, “Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature,” Opt. Express 10, 805–817 (2002), http://www.opticsinfobase.org/abstract.cfm?id=69680 .
  14. H. W. Schrötter, “Raman and infrared spectroscopic techniques for remote analysis of the atmosphere,” in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Heyden, London, 1982), Vol. 8, pp. 1–51.
  15. C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
    [CrossRef]
  16. H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Topics in Applied Physics (Springer-Verlag, Berlin, 1976), pp. 153–232.
  17. W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” Mol. Phys. 36, 727–732 (1978).
    [CrossRef]
  18. A. Behrendt, “Fernmessung atmosphaerischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar,” doctoral dissertation (University of Hamburg, Hamburg, Germany, 2000).
  19. J. Cooney, “Normalization of elastic lidar returns by use of Raman rotational backscatter,” Appl. Opt. 14, 270–271 (1975).
    [CrossRef] [PubMed]
  20. J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000).
    [CrossRef]
  21. V. M. Mitev, I. V. Grogorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction profile,” Bulg. J. Phys. 17, 67–74 (1990).
  22. V. M. Mitev, I. V. Grogorov, V. B. Simeonov, “Lidar measurements of aerosol extinction profiles: a comparison between two techniques—Klett inversion and pure rotational Raman scattering methods,” Appl. Opt. 31, 6469–6474 (1992).
    [CrossRef] [PubMed]
  23. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
    [CrossRef]
  24. J. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
    [CrossRef]
  25. J. Marling, “1.05–1.44 µm tunability and performance of the cw Nd3+:YAG laser,” IEEE J. Quantum Electron. 14, 56–62 (1978).
    [CrossRef]
  26. K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).
  27. H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).
  28. A. Behrendt, C. Weitkamp, “Optimizing the spectral parameters of a lidar receiver for rotational Raman temperature measurements,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th ILRC, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau Cedex, France, 2001), pp. 113–116.
  29. When this paper was revised, we had just made the first test measurements with a new data-acquisition system that allows us to detect signals in both analog and photon-counting modes simultaneously. Initial results underline this prediction.
  30. J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
    [CrossRef] [PubMed]
  31. Yu. F. Arshinov, S. M. Bobrovnikov, “Use of a Fabry–Perot Interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
    [CrossRef]
  32. D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 786.
  33. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, Boston, Mass., 1992), pp. 44 ff.
  34. D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive operation periods,” J. Atmos. Ocean. Technol. 16, 1062–1076 (1999).
    [CrossRef]

2002

2001

2000

1999

Yu. F. Arshinov, S. M. Bobrovnikov, “Use of a Fabry–Perot Interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
[CrossRef]

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive operation periods,” J. Atmos. Ocean. Technol. 16, 1062–1076 (1999).
[CrossRef]

1996

1993

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

1992

1990

V. M. Mitev, I. V. Grogorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction profile,” Bulg. J. Phys. 17, 67–74 (1990).

1985

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

1983

1979

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

1978

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” Mol. Phys. 36, 727–732 (1978).
[CrossRef]

J. Marling, “1.05–1.44 µm tunability and performance of the cw Nd3+:YAG laser,” IEEE J. Quantum Electron. 14, 56–62 (1978).
[CrossRef]

1976

1975

1972

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

1970

J. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

1969

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Abo, M.

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

Ansmann, A.

Arshinov, Y. F.

Arshinov, Yu. F.

Yu. F. Arshinov, S. M. Bobrovnikov, “Use of a Fabry–Perot Interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
[CrossRef]

V. M. Mitev, I. V. Grogorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction profile,” Bulg. J. Phys. 17, 67–74 (1990).

Behrendt, A.

The formula for calculating rotational Raman signal intensities can be found, e.g., in A. Behrendt, T. Nakamura, “Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature,” Opt. Express 10, 805–817 (2002), http://www.opticsinfobase.org/abstract.cfm?id=69680 .

A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar using an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

A. Behrendt, J. Reichardt, A. Dörnbrack, C. Weitkamp, “Leewave PSCs in Northern Scandinavia between 22 and 26 January, 1998: lidar measurements of temperature and optical particle properties above esrange and mesoscale model analyses,” in Stratospheric Ozone 1999–Proceedings of the Fifth European Symposium, N. R. P. Harris, M. Guirlet, G. T. Amanatidis, eds., Air Pollution Research Rep. 73 (European Commission, Brussels, 2000), pp. 149–152.

A. Behrendt, “Fernmessung atmosphaerischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar,” doctoral dissertation (University of Hamburg, Hamburg, Germany, 2000).

A. Behrendt, C. Weitkamp, “Optimizing the spectral parameters of a lidar receiver for rotational Raman temperature measurements,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th ILRC, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau Cedex, France, 2001), pp. 113–116.

Bevington, P. R.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, Boston, Mass., 1992), pp. 44 ff.

Bisson, S. E.

Bobrovnikov, S. M.

Chanin, M. L.

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Cooney, J.

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

J. Cooney, M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976).
[CrossRef] [PubMed]

J. Cooney, “Normalization of elastic lidar returns by use of Raman rotational backscatter,” Appl. Opt. 14, 270–271 (1975).
[CrossRef] [PubMed]

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

J. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

Dörnbrack, A.

A. Behrendt, J. Reichardt, A. Dörnbrack, C. Weitkamp, “Leewave PSCs in Northern Scandinavia between 22 and 26 January, 1998: lidar measurements of temperature and optical particle properties above esrange and mesoscale model analyses,” in Stratospheric Ozone 1999–Proceedings of the Fifth European Symposium, N. R. P. Harris, M. Guirlet, G. T. Amanatidis, eds., Air Pollution Research Rep. 73 (European Commission, Brussels, 2000), pp. 149–152.

Evans, D. R.

D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 786.

Farina, J.

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

Fukao, S.

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

Geller, K.

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

Gill, R.

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

Goldsmith, J. E. M.

D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive operation periods,” J. Atmos. Ocean. Technol. 16, 1062–1076 (1999).
[CrossRef]

Grogorov, I. V.

V. M. Mitev, I. V. Grogorov, V. B. Simeonov, “Lidar measurements of aerosol extinction profiles: a comparison between two techniques—Klett inversion and pure rotational Raman scattering methods,” Appl. Opt. 31, 6469–6474 (1992).
[CrossRef] [PubMed]

V. M. Mitev, I. V. Grogorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction profile,” Bulg. J. Phys. 17, 67–74 (1990).

Hauchecorne, A.

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Inaba, H.

H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Topics in Applied Physics (Springer-Verlag, Berlin, 1976), pp. 153–232.

Kato, S.

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

Kato, T.

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

Kawahara, T. D.

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

Kitahara, T.

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

Kobayashi, K.

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

Lahmann, W.

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Makihira, T.

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

Marling, J.

J. Marling, “1.05–1.44 µm tunability and performance of the cw Nd3+:YAG laser,” IEEE J. Quantum Electron. 14, 56–62 (1978).
[CrossRef]

McCormick, M. P.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Melfi, S. H.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Michaelis, W.

Mitev, V.

Mitev, V. M.

Miyagawa, H.

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

Murphy, W. F.

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” Mol. Phys. 36, 727–732 (1978).
[CrossRef]

Nagasawa, C.

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

Nakamura, T.

The formula for calculating rotational Raman signal intensities can be found, e.g., in A. Behrendt, T. Nakamura, “Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature,” Opt. Express 10, 805–817 (2002), http://www.opticsinfobase.org/abstract.cfm?id=69680 .

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Neidhart, B.

Nomura, A.

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

Pepler, S. J.

Philbrick, C. R.

C. R. Philbrick, “Raman lidar capability to measure tropospheric properties,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwenmer, eds., NASA/CP-1998-207671/PT1 (National Aeronautics and Space Administration, Langley Research Center, Hampton, Va.), pp. 289–292.

Pina, M.

Reichardt, J.

A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar using an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000).
[CrossRef]

A. Behrendt, J. Reichardt, A. Dörnbrack, C. Weitkamp, “Leewave PSCs in Northern Scandinavia between 22 and 26 January, 1998: lidar measurements of temperature and optical particle properties above esrange and mesoscale model analyses,” in Stratospheric Ozone 1999–Proceedings of the Fifth European Symposium, N. R. P. Harris, M. Guirlet, G. T. Amanatidis, eds., Air Pollution Research Rep. 73 (European Commission, Brussels, 2000), pp. 149–152.

Reichardt, S.

Riebesell, M.

Robinson, D. K.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, Boston, Mass., 1992), pp. 44 ff.

Saito, Y.

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

Sato, S.

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

Sato, T.

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

Schrötter, H. W.

H. W. Schrötter, “Raman and infrared spectroscopic techniques for remote analysis of the atmosphere,” in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Heyden, London, 1982), Vol. 8, pp. 1–51.

She, C.-Y.

Simeonov, V. B.

V. M. Mitev, I. V. Grogorov, V. B. Simeonov, “Lidar measurements of aerosol extinction profiles: a comparison between two techniques—Klett inversion and pure rotational Raman scattering methods,” Appl. Opt. 31, 6469–6474 (1992).
[CrossRef] [PubMed]

V. M. Mitev, I. V. Grogorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction profile,” Bulg. J. Phys. 17, 67–74 (1990).

Thomas, L.

Tsuda, T.

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

Tsutsumi, M.

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

Turner, D. D.

D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive operation periods,” J. Atmos. Ocean. Technol. 16, 1062–1076 (1999).
[CrossRef]

Vaughan, G.

Wakasugi, K.

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

Wandinger, U.

Wareing, D. P.

Weitkamp, C.

J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000).
[CrossRef]

J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

A. Behrendt, J. Reichardt, A. Dörnbrack, C. Weitkamp, “Leewave PSCs in Northern Scandinavia between 22 and 26 January, 1998: lidar measurements of temperature and optical particle properties above esrange and mesoscale model analyses,” in Stratospheric Ozone 1999–Proceedings of the Fifth European Symposium, N. R. P. Harris, M. Guirlet, G. T. Amanatidis, eds., Air Pollution Research Rep. 73 (European Commission, Brussels, 2000), pp. 149–152.

A. Behrendt, C. Weitkamp, “Optimizing the spectral parameters of a lidar receiver for rotational Raman temperature measurements,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th ILRC, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau Cedex, France, 2001), pp. 113–116.

Zeyn, J.

Zuev, V. E.

Appl. Meteorol.

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Appl. Opt.

Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef] [PubMed]

V. M. Mitev, I. V. Grogorov, V. B. Simeonov, “Lidar measurements of aerosol extinction profiles: a comparison between two techniques—Klett inversion and pure rotational Raman scattering methods,” Appl. Opt. 31, 6469–6474 (1992).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

Yu. F. Arshinov, S. M. Bobrovnikov, “Use of a Fabry–Perot Interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
[CrossRef]

A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar using an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000).
[CrossRef]

C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
[CrossRef]

J. Cooney, “Normalization of elastic lidar returns by use of Raman rotational backscatter,” Appl. Opt. 14, 270–271 (1975).
[CrossRef] [PubMed]

J. Cooney, M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Bulg. J. Phys.

V. M. Mitev, I. V. Grogorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction profile,” Bulg. J. Phys. 17, 67–74 (1990).

Earth Planets Space

K. Kobayashi, T. Kitahara, T. D. Kawahara, Y. Saito, A. Nomura, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, M. Tsutsumi, “Simultaneous measurements of the dynamical structure of the mesopause region with lidars and MU radar,” Earth Planets Space 51, 731–739 (1999).

H. Miyagawa, T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, A. Nomura, “Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,” Earth Planets Space 51, 785–797 (1999).

IEEE J. Quantum Electron.

J. Marling, “1.05–1.44 µm tunability and performance of the cw Nd3+:YAG laser,” IEEE J. Quantum Electron. 14, 56–62 (1978).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

J. Appl. Meteorol.

R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

J. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

J. Atmos. Ocean. Technol.

D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive operation periods,” J. Atmos. Ocean. Technol. 16, 1062–1076 (1999).
[CrossRef]

Mol. Phys.

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” Mol. Phys. 36, 727–732 (1978).
[CrossRef]

Opt. Express

Opt. Lett.

Radio Sci.

S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985).
[CrossRef]

S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985).
[CrossRef]

Other

C. R. Philbrick, “Raman lidar capability to measure tropospheric properties,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwenmer, eds., NASA/CP-1998-207671/PT1 (National Aeronautics and Space Administration, Langley Research Center, Hampton, Va.), pp. 289–292.

A. Behrendt, J. Reichardt, A. Dörnbrack, C. Weitkamp, “Leewave PSCs in Northern Scandinavia between 22 and 26 January, 1998: lidar measurements of temperature and optical particle properties above esrange and mesoscale model analyses,” in Stratospheric Ozone 1999–Proceedings of the Fifth European Symposium, N. R. P. Harris, M. Guirlet, G. T. Amanatidis, eds., Air Pollution Research Rep. 73 (European Commission, Brussels, 2000), pp. 149–152.

H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Topics in Applied Physics (Springer-Verlag, Berlin, 1976), pp. 153–232.

A. Behrendt, “Fernmessung atmosphaerischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar,” doctoral dissertation (University of Hamburg, Hamburg, Germany, 2000).

A. Behrendt, C. Weitkamp, “Optimizing the spectral parameters of a lidar receiver for rotational Raman temperature measurements,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th ILRC, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau Cedex, France, 2001), pp. 113–116.

When this paper was revised, we had just made the first test measurements with a new data-acquisition system that allows us to detect signals in both analog and photon-counting modes simultaneously. Initial results underline this prediction.

H. W. Schrötter, “Raman and infrared spectroscopic techniques for remote analysis of the atmosphere,” in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Heyden, London, 1982), Vol. 8, pp. 1–51.

D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 786.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, Boston, Mass., 1992), pp. 44 ff.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Overview of lidar backscatter signals for a laser wavelength of 532 nm. For the calculation of the rotational wings the temperature was set to 300 K. The atmospheric H2O mixing ratio was set to 1%. ν 1 and 2 ν 2 denote different vibrational modes of the three-atomic molecules H2O and CO2.

Fig. 2
Fig. 2

(a) Calculated intensity of the two pure RR signals, N RR1 and N RR2, versus temperature T for the spectral parameters of the RASC lidar. (b) Signal ratio Q, which serves for the temperature measurement of the atmosphere, and weighted sum N ref, which is used as Raman reference signal. (c) Relative change of N ref with temperature. Vertical lines mark the range of atmospheric temperatures of the measurement example discussed in Section 4.

Fig. 3
Fig. 3

Schematic overview of the RASC lidar setup: BD, beam dump; PD, photodiode; BSM, beam steering mirror. The Na lidar transmitter serves for a collocated system (the data acquisition of this system is not shown).

Fig. 4
Fig. 4

Schematic overview of the polychromator: L1–L6, lenses; IF1, IF2a, IF2b, interference filters; BS1–BS5, beam splitters; ND1–ND3, neutral-density attenuators; PMT1–PMT5, photomultiplier tubes for the signals indicated; M, mirror. The sodium resonance channel belongs to a collocated system.

Fig. 5
Fig. 5

RASC lidar signals: elastic backscattering (solid curve), H2O vibrational Raman (dashed curve), first pure RR (dotted curve), second pure RR (dashed–dotted curve), and temperature-independent Raman reference signal derived from the pure RR signals versus height above sea level (the lidar altitude is 380 m). The data were taken at 23:28–23:37 JST on 16 May 2001 (27,000 laser shots). Neutral-density attenuators with transmissions of 25% and 0.1% were used for both RR channels and the elastic channel, respectively, to prevent saturation. The RR signal data were stored with a height resolution of 100 m and afterward summed for this plot with a 300-m sliding-window length. The elastic backscattering signal and the H2O vibrational Raman signal are shown with their raw data resolution of 300 m. The data displayed are already corrected for background noise and receiver dead time. The reference signal was normalized at 15-km altitude to the elastic backscatter signal.

Fig. 6
Fig. 6

RASC lidar temperature measurement by the RR (Rot. Raman) technique. The data were taken on 16 May 2001 within 9 min of the start of integration time (27,000 laser shots) at 23:28 JST (same as in Fig. 5). To avoid saturation we reduced the RR signal intensity to 25% by means of neutral-density attenuators. The signals were corrected for background noise, receiver dead time, and elastic backscatter cross talk and were averaged with a 500-m sliding-window length. Error bars at the left and the curve at the right show the 1-σ statistical uncertainty that is due to signal noise. The local radiosonde was started at the lidar site at 23:56 JST on the same day.

Fig. 7
Fig. 7

Backscatter ratio, particle backscatter coefficient βpar, particle extinction coefficient αpar, and extinction-to-backscatter-ratio (all solid curves) calculated with the elastic signal and the RR reference signal displayed in Fig. 5. Time and height resolution are 9 min and 300 m, respectively. For comparison, the molecular backscatter coefficient and the molecular extinction coefficient are also shown (dotted enlarged by a factor of 10). Error bars denote the statistical uncertainties that are due to signal noise.

Fig. 8
Fig. 8

Humidity derived from the H2O Raman signal and the RR reference signal displayed in Fig. 5. Time and height resolution are 9 min and 300 m, respectively. Error bars show the 1-σ statistical uncertainty that is due to signal noise. The local radiosonde was started at 23:56 JST.

Fig. 9
Fig. 9

Daylight temperature measurement with the RASC lidar by the RR technique (solid curve, left panel) taken at 8:00–9:01 JST on 14 May 2001 (1.8 × 105 laser shots). The solar elevation angle was 37°–49° in this period. Neutral-density attenuators with 4% transmission were used. The RR signals were corrected for receiver dead time and background noise and averaged with a 900-m sliding-window length. Error bars at the left and the curve at the right show the 1-σ statistical uncertainty that is due to signal noise. Also shown are the temperature data of a near-by radiosonde, which was started in Shionomisaki (33.5 °N, 135.8 °E), ∼150 km south of the lidar site, at 9:00 JST on the same day and drifted in the direction of the lidar.

Fig. 10
Fig. 10

Same as Fig. 9 but with lidar data taken from 10:59 to 12:00 JST on the same day (also 1.8 × 105 laser shots). The solar elevation angle was 70°–74°. Neutral-density attenuators with 1% transmission were used.

Fig. 11
Fig. 11

Response of the photon-counting detectors used: Filled circles, measured count rate N m relative to the transmission of neutral-density (ND) filters used in the experiment and fit of these data points with the response function, i.e., N m versus true count rate N t , which is expected for a paralyzable detector system with a dead time of 12 ns.

Fig. 12
Fig. 12

Increase in statistical temperature error with increasing solar background signal: 1-σ statistical error of RR temperature measurements at heights z of 3 and 5 km versus local time (top) and solar elevation angle versus local time (bottom). The lidar data of 13 and 14 May 2001 were taken with the height and time sliding-average lengths indicated (Δz and Δt, respectively). Neutral-density attenuators with 25%, 4%, and 1% transmission were used at times of 23:22–4:38, 5:28–9:00, and 9:58–12:12 JST, respectively.

Tables (3)

Tables Icon

Table 1 Technical Data of the RASC Lidar

Tables Icon

Table 2 Optical Properties of the Filter Polychromatora

Tables Icon

Table 3 Main Properties of the Receiving Channels of the RASC Lidar

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Nrefz=NRR1z+cNRR2z,
Qz=NRR2zNRR1z-κNElz,
Nm=Nt exp-Ntτ,
ΔTz=TQNRR2zNRR1zNRR1*z+ΔB¯RR12NRR1z2+NRR2*z+ΔB¯RR22NRR2z21/2,
dσ/dΩVR,N2=4.05×10-35m2/sr,dσ/dΩVR,O2=4.83×10-35m2/sr,dσ/dΩRR,air=1.51×10-33m2/sr

Metrics