Abstract

A two-step K+–Na+ and Ag+–Na+ ion-exchange technique is introduced to fabricate single-mode channel waveguides in BK7 glass for the telecom-wavelength region. The dependencies of insertion loss, polarization-dependent loss (PDL), and bending loss of curved waveguides on channel width, diffusion time, and annealing time are investigated. Results show that postannealing is a required process for improving waveguide properties and an optimal annealing time exists. Although relatively narrow mask openings are used in most one-step ion-exchange processes, a wider channel width, to as wide as 10 µm, is preferred for this two-step method. The minimum coupling loss to/from single-mode fiber and the propagation loss is found to be 0.4 dB and 0.3 dB/cm, respectively. For 5-cm-long waveguides the PDL is less than 0.1 dB. For the S-bend structure the cosine curve exhibits apparently a lower bending loss than the double-arc curve.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-J. Li, S. Honkanen, W.-J. Wang, S. I. Najafi, A. Tervonen, P. Pöyhönen, “Buried glass waveguides by ion-exchange through an ionic barrier,” in Micro-Optics II, A. M. Scheggi, ed., Proc. SPIE1506, 52–57 (1991).
  2. A. Tervonen, S. Honkanen, “Model for waveguide fabrication in glass by a two-step ion exchange with ionic masking,” Opt. Lett. 13, 71–73 (1988).
    [CrossRef] [PubMed]
  3. R. G. Walker, C. D. W. Wilkinson, “Integrated optical waveguiding structures made by silver ion exchange in glass. 1. the propagation characteristics of stripe ion-exchanged waveguides: a theoretical and experimental investigation.” Appl. Opt. 22, 1923–1928 (1983).
    [CrossRef]
  4. S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, Boston, 1992).
  5. W. J. Wang, S. Honkanen, S. I. Najafi, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74, 1529–1533 (1993).
    [CrossRef]
  6. C. Ciminelli, A. D’Orazio, M. De Sario, C. Gerardi, V. Petruzzelli, F. Prudenzano, “Effects of thermal annealing on the optical characteristics of K+–Na+ waveguides,” Appl. Opt. 37, 2346–2356 (1998).
    [CrossRef]
  7. H. F. Schlaak, A. Branderburg, G. Sulz, “Integrated optical circuits with curved waveguides,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 38–45 (1986).
  8. R. G. Walker, C. D. W. Wilkinson, “Integrated optical waveguiding structures made by silver ion exchange in glass. 2. Directional coupler and bends,” Appl. Opt. 22, 1929–1936 (1983).
    [CrossRef]
  9. H.-G. Unger, Planar Optical Waveguides and Fibers (Clarendon, Oxford, UK, 1977).

1998 (1)

1993 (1)

W. J. Wang, S. Honkanen, S. I. Najafi, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74, 1529–1533 (1993).
[CrossRef]

1988 (1)

1983 (2)

Branderburg, A.

H. F. Schlaak, A. Branderburg, G. Sulz, “Integrated optical circuits with curved waveguides,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 38–45 (1986).

Ciminelli, C.

D’Orazio, A.

De Sario, M.

Gerardi, C.

Honkanen, S.

W. J. Wang, S. Honkanen, S. I. Najafi, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74, 1529–1533 (1993).
[CrossRef]

A. Tervonen, S. Honkanen, “Model for waveguide fabrication in glass by a two-step ion exchange with ionic masking,” Opt. Lett. 13, 71–73 (1988).
[CrossRef] [PubMed]

M.-J. Li, S. Honkanen, W.-J. Wang, S. I. Najafi, A. Tervonen, P. Pöyhönen, “Buried glass waveguides by ion-exchange through an ionic barrier,” in Micro-Optics II, A. M. Scheggi, ed., Proc. SPIE1506, 52–57 (1991).

Li, M.-J.

M.-J. Li, S. Honkanen, W.-J. Wang, S. I. Najafi, A. Tervonen, P. Pöyhönen, “Buried glass waveguides by ion-exchange through an ionic barrier,” in Micro-Optics II, A. M. Scheggi, ed., Proc. SPIE1506, 52–57 (1991).

Najafi, S. I.

W. J. Wang, S. Honkanen, S. I. Najafi, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74, 1529–1533 (1993).
[CrossRef]

M.-J. Li, S. Honkanen, W.-J. Wang, S. I. Najafi, A. Tervonen, P. Pöyhönen, “Buried glass waveguides by ion-exchange through an ionic barrier,” in Micro-Optics II, A. M. Scheggi, ed., Proc. SPIE1506, 52–57 (1991).

S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, Boston, 1992).

Petruzzelli, V.

Pöyhönen, P.

M.-J. Li, S. Honkanen, W.-J. Wang, S. I. Najafi, A. Tervonen, P. Pöyhönen, “Buried glass waveguides by ion-exchange through an ionic barrier,” in Micro-Optics II, A. M. Scheggi, ed., Proc. SPIE1506, 52–57 (1991).

Prudenzano, F.

Schlaak, H. F.

H. F. Schlaak, A. Branderburg, G. Sulz, “Integrated optical circuits with curved waveguides,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 38–45 (1986).

Sulz, G.

H. F. Schlaak, A. Branderburg, G. Sulz, “Integrated optical circuits with curved waveguides,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 38–45 (1986).

Tervonen, A.

A. Tervonen, S. Honkanen, “Model for waveguide fabrication in glass by a two-step ion exchange with ionic masking,” Opt. Lett. 13, 71–73 (1988).
[CrossRef] [PubMed]

M.-J. Li, S. Honkanen, W.-J. Wang, S. I. Najafi, A. Tervonen, P. Pöyhönen, “Buried glass waveguides by ion-exchange through an ionic barrier,” in Micro-Optics II, A. M. Scheggi, ed., Proc. SPIE1506, 52–57 (1991).

Unger, H.-G.

H.-G. Unger, Planar Optical Waveguides and Fibers (Clarendon, Oxford, UK, 1977).

Walker, R. G.

Wang, W. J.

W. J. Wang, S. Honkanen, S. I. Najafi, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74, 1529–1533 (1993).
[CrossRef]

Wang, W.-J.

M.-J. Li, S. Honkanen, W.-J. Wang, S. I. Najafi, A. Tervonen, P. Pöyhönen, “Buried glass waveguides by ion-exchange through an ionic barrier,” in Micro-Optics II, A. M. Scheggi, ed., Proc. SPIE1506, 52–57 (1991).

Wilkinson, C. D. W.

Appl. Opt. (3)

J. Appl. Phys. (1)

W. J. Wang, S. Honkanen, S. I. Najafi, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74, 1529–1533 (1993).
[CrossRef]

Opt. Lett. (1)

Other (4)

H. F. Schlaak, A. Branderburg, G. Sulz, “Integrated optical circuits with curved waveguides,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 38–45 (1986).

H.-G. Unger, Planar Optical Waveguides and Fibers (Clarendon, Oxford, UK, 1977).

M.-J. Li, S. Honkanen, W.-J. Wang, S. I. Najafi, A. Tervonen, P. Pöyhönen, “Buried glass waveguides by ion-exchange through an ionic barrier,” in Micro-Optics II, A. M. Scheggi, ed., Proc. SPIE1506, 52–57 (1991).

S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, Boston, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Double-arc S-bend structure. (The cosine bend has the same H, L values.)

Fig. 2
Fig. 2

Waveguide-characterization setup.

Fig. 3
Fig. 3

FWHM of S3 scanning profiles before the annealing.

Fig. 4
Fig. 4

Propagation losses before the annealing.

Fig. 5
Fig. 5

Coupling losses before the annealing.

Fig. 6
Fig. 6

FWHM of S3 scanning profiles after 24 h of annealing.

Fig. 7
Fig. 7

Propagation losses after the final annealing.

Fig. 8
Fig. 8

Coupling losses after the final annealing.

Fig. 9
Fig. 9

PDL of S3 with different annealing times.

Fig. 10
Fig. 10

Bending losses of S3 (arc bends) after 24 h of the annealing.

Fig. 11
Fig. 11

Bending losses of S4 (cosine bends) after 24 h of the annealing.

Fig. 12
Fig. 12

Bending losses of R10 in S4 with different annealing times.

Tables (3)

Tables Icon

Table 1 Specifications of the Waveguide Bend

Tables Icon

Table 2 Fabrication Conditions of the Samples

Tables Icon

Table 3 Scanning Profile FWHM before Annealing

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

De=C1 exp-C2/T,
LI=P0-PSMF.
LC=PMMF-PSMF.
LP=LI-2*LC/l,
V=K0*Q*2ns*Δnm1/2,

Metrics