Abstract

The monitoring of interferometer fiber optic sensors using a laser that is scanned over a wide frequency range is investigated. The interrogation technique is based on the principle that if the light-source frequency varies linearly with time, the optical signal reflected or transmitted is intensity modulated at a frequency that is proportional to the optical path difference (OPD) in the interferometer. Fourier components in the detected optical output signal then correspond to the OPDs of any interferometers that have contributed to this modulation. The temporal position of a peak in the power spectrum of this signal is proportional to the OPD of the interferometer that is responsible for that peak. A fine tuning of the OPD value is determined from the phase of the corresponding Fourier component. Experimentally, an Er:fiber laser scanned over a 46-nm range centered at 1540 nm was used to monitor intrinsic fiber Fabry–Perot interferometers (FFPIs). Variations in the laser scan rate were compensated with the optical signal modulated by a reference FFPI held at a constant temperature. The OPD measurement resolution was 3.6 nm, and the dynamic range was 1.3 × 107. The temperature was measured from 20 °C to 610 °C with a 0.02 °C resolution, and multiplexing of three of the sensors arranged in series was demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Beheim, “Remote displacement measurement using a passive interferometer with a fiber optic link,” Appl. Opt. 24, 2335–2340 (1985).
    [CrossRef] [PubMed]
  2. H. S. Choi, H. F. Taylor, C. E. Lee, “High-performance fiber optic temperature sensor using low-coherence interferometry,” Opt. Lett. 22, 1814–1816 (1997).
    [CrossRef]
  3. Y. Chen, H. F. Taylor, “Multiplexed fiber Fabry–Perot temperature sensors system using white light interferometry,” Opt. Lett. 27, 903–905 (2002).
    [CrossRef]
  4. C. M. Davis, C. J. Zarobila, J. D. Rand, “Fiber-optic temperature sensor for microwave environments,” in Optical Fibers in Medicine III, A. Katzir, ed., Proc. SPIE906, 114–118 (1988).
  5. M. Singh, C. J. Tuck, G. F. Fernando, “Multiplexed optic fiber Fabry–Perot sensors for strain metrology,” Smart Mater. Struct. 8, 549–553 (1999).
    [CrossRef]
  6. S. C. Kaddu, S. F. Collins, D. J. Booth, “Multiplexed intrinsic optical fibre Fabry–Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
    [CrossRef]
  7. I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent optical-fibre sensors with modulated laser sources,” Electron. Lett. 19, 14–15 (1983).
    [CrossRef]
  8. D. Uttam, B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3, 971–977 (1985).
    [CrossRef]
  9. A. J. Hymans, J. Lait, “Analysis of a frequency-modulated continuous-wave ranging system,” Proc. Inst. Electr. Eng. 107 B, 365–372 (1960).
  10. J. M. Oh, H. B. Choi, D. Lee, S. J. Ahn, “Incorporation of a fiber Bragg of a 1580-nm-band grating to improve the efficiency tunable fiber ring laser,” Opt. Lett. 27, 589–591 (2002).
    [CrossRef]
  11. M. Ibsen, S. Alam, M. N. Zervas, A. B. Grundinin, D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
    [CrossRef]
  12. F. Chollet, J. P. Goedgebuer, H. Porte, A. Hamel, “Electro-optic narrow linewidth tuning and intensity modulation of an erbium fiber ring laser,” IEEE Photon. Technol. Lett. 8, 1009–1011 (1996).
    [CrossRef]
  13. C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24, 193–194 (1988).
    [CrossRef]
  14. I. Alasaarela, P. Karioja, H. Kopola, “Comparison of distributed fiber optic sensing methods for location and quantity information measurements,” Opt. Eng. 41, 181–189 (2002).
    [CrossRef]
  15. K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
    [CrossRef]
  16. R. Sadkowski, C. E. Lee, H. F. Taylor, “Multiplexed interferometric fiber-optic sensors with digital signal processing,” Appl. Opt. 34, 5861–5866 (1995).
    [CrossRef] [PubMed]
  17. H. F. Taylor, “Fiber optic Fabry–Perot sensors,” in Fiber Optic Sensors, F. T. Y. Yu, ed. (Marcel Dekker, New York, 2002), pp. 41–74.
  18. S. Grosswig, E. Hurtig, K. Kuh, F. Rudolph, “Distributed fibre-optic temperature sensing technique (DTS) for surveying underground gas storage facilities,” Oil Gas Eur. Mag. 27 (4), 31–34 (2001).
  19. T. Unneland, Y. Manin, F. Kuchuk, “Permanent gauge pressure and rate measurements for reservoir description and well monitoring: field cases,” SPE Reservoir Eval. Eng. 3, 224–230 (1988).
  20. W. Lee, J. Lee, C. Henderson, H. F. Taylor, R. James, C. E. Lee, V. Swenson, R. A. Atkins, W. G. Gemeiner, “Railroad bridge instrumentation with fiber optic sensors,” Appl. Opt. 38, 1110–1114 (1999).
    [CrossRef]
  21. R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, “Structure health monitoring of innovative bridges in Canada with fiber optic sensors,” Smart Mater. Struct. 10, 560–573 (2001).
    [CrossRef]
  22. G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, S. T. Vohra, “Ship hull structure monitoring using fibre optic sensors,” Smart Mater. Struct. 10, 472–478 (2001).
    [CrossRef]

2002 (3)

2001 (3)

S. Grosswig, E. Hurtig, K. Kuh, F. Rudolph, “Distributed fibre-optic temperature sensing technique (DTS) for surveying underground gas storage facilities,” Oil Gas Eur. Mag. 27 (4), 31–34 (2001).

R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, “Structure health monitoring of innovative bridges in Canada with fiber optic sensors,” Smart Mater. Struct. 10, 560–573 (2001).
[CrossRef]

G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, S. T. Vohra, “Ship hull structure monitoring using fibre optic sensors,” Smart Mater. Struct. 10, 472–478 (2001).
[CrossRef]

1999 (4)

W. Lee, J. Lee, C. Henderson, H. F. Taylor, R. James, C. E. Lee, V. Swenson, R. A. Atkins, W. G. Gemeiner, “Railroad bridge instrumentation with fiber optic sensors,” Appl. Opt. 38, 1110–1114 (1999).
[CrossRef]

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grundinin, D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

M. Singh, C. J. Tuck, G. F. Fernando, “Multiplexed optic fiber Fabry–Perot sensors for strain metrology,” Smart Mater. Struct. 8, 549–553 (1999).
[CrossRef]

S. C. Kaddu, S. F. Collins, D. J. Booth, “Multiplexed intrinsic optical fibre Fabry–Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[CrossRef]

1997 (2)

H. S. Choi, H. F. Taylor, C. E. Lee, “High-performance fiber optic temperature sensor using low-coherence interferometry,” Opt. Lett. 22, 1814–1816 (1997).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

1996 (1)

F. Chollet, J. P. Goedgebuer, H. Porte, A. Hamel, “Electro-optic narrow linewidth tuning and intensity modulation of an erbium fiber ring laser,” IEEE Photon. Technol. Lett. 8, 1009–1011 (1996).
[CrossRef]

1995 (1)

1988 (2)

T. Unneland, Y. Manin, F. Kuchuk, “Permanent gauge pressure and rate measurements for reservoir description and well monitoring: field cases,” SPE Reservoir Eval. Eng. 3, 224–230 (1988).

C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24, 193–194 (1988).
[CrossRef]

1985 (2)

G. Beheim, “Remote displacement measurement using a passive interferometer with a fiber optic link,” Appl. Opt. 24, 2335–2340 (1985).
[CrossRef] [PubMed]

D. Uttam, B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3, 971–977 (1985).
[CrossRef]

1983 (1)

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent optical-fibre sensors with modulated laser sources,” Electron. Lett. 19, 14–15 (1983).
[CrossRef]

1960 (1)

A. J. Hymans, J. Lait, “Analysis of a frequency-modulated continuous-wave ranging system,” Proc. Inst. Electr. Eng. 107 B, 365–372 (1960).

Ahn, S. J.

Alam, S.

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grundinin, D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

Alasaarela, I.

I. Alasaarela, P. Karioja, H. Kopola, “Comparison of distributed fiber optic sensing methods for location and quantity information measurements,” Opt. Eng. 41, 181–189 (2002).
[CrossRef]

Atkins, R. A.

Beheim, G.

Benmokrane, B.

R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, “Structure health monitoring of innovative bridges in Canada with fiber optic sensors,” Smart Mater. Struct. 10, 560–573 (2001).
[CrossRef]

Booth, D. J.

S. C. Kaddu, S. F. Collins, D. J. Booth, “Multiplexed intrinsic optical fibre Fabry–Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[CrossRef]

Chen, Y.

Choi, H. B.

Choi, H. S.

Chollet, F.

F. Chollet, J. P. Goedgebuer, H. Porte, A. Hamel, “Electro-optic narrow linewidth tuning and intensity modulation of an erbium fiber ring laser,” IEEE Photon. Technol. Lett. 8, 1009–1011 (1996).
[CrossRef]

Collins, S. F.

S. C. Kaddu, S. F. Collins, D. J. Booth, “Multiplexed intrinsic optical fibre Fabry–Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[CrossRef]

Culshaw, B.

D. Uttam, B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3, 971–977 (1985).
[CrossRef]

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent optical-fibre sensors with modulated laser sources,” Electron. Lett. 19, 14–15 (1983).
[CrossRef]

Davies, D. E. N.

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent optical-fibre sensors with modulated laser sources,” Electron. Lett. 19, 14–15 (1983).
[CrossRef]

Davis, C. M.

C. M. Davis, C. J. Zarobila, J. D. Rand, “Fiber-optic temperature sensor for microwave environments,” in Optical Fibers in Medicine III, A. Katzir, ed., Proc. SPIE906, 114–118 (1988).

Fernando, G. F.

M. Singh, C. J. Tuck, G. F. Fernando, “Multiplexed optic fiber Fabry–Perot sensors for strain metrology,” Smart Mater. Struct. 8, 549–553 (1999).
[CrossRef]

Gemeiner, W. G.

Giles, I. P.

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent optical-fibre sensors with modulated laser sources,” Electron. Lett. 19, 14–15 (1983).
[CrossRef]

Goedgebuer, J. P.

F. Chollet, J. P. Goedgebuer, H. Porte, A. Hamel, “Electro-optic narrow linewidth tuning and intensity modulation of an erbium fiber ring laser,” IEEE Photon. Technol. Lett. 8, 1009–1011 (1996).
[CrossRef]

Grosswig, S.

S. Grosswig, E. Hurtig, K. Kuh, F. Rudolph, “Distributed fibre-optic temperature sensing technique (DTS) for surveying underground gas storage facilities,” Oil Gas Eur. Mag. 27 (4), 31–34 (2001).

Grundinin, A. B.

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grundinin, D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

Hamel, A.

F. Chollet, J. P. Goedgebuer, H. Porte, A. Hamel, “Electro-optic narrow linewidth tuning and intensity modulation of an erbium fiber ring laser,” IEEE Photon. Technol. Lett. 8, 1009–1011 (1996).
[CrossRef]

Havsgard, G. B.

G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, S. T. Vohra, “Ship hull structure monitoring using fibre optic sensors,” Smart Mater. Struct. 10, 472–478 (2001).
[CrossRef]

Henderson, C.

Horiguchi, T.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

Hurtig, E.

S. Grosswig, E. Hurtig, K. Kuh, F. Rudolph, “Distributed fibre-optic temperature sensing technique (DTS) for surveying underground gas storage facilities,” Oil Gas Eur. Mag. 27 (4), 31–34 (2001).

Hymans, A. J.

A. J. Hymans, J. Lait, “Analysis of a frequency-modulated continuous-wave ranging system,” Proc. Inst. Electr. Eng. 107 B, 365–372 (1960).

Ibsen, M.

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grundinin, D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

James, R.

Jensen, A. E.

G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, S. T. Vohra, “Ship hull structure monitoring using fibre optic sensors,” Smart Mater. Struct. 10, 472–478 (2001).
[CrossRef]

Johnson, G. A.

G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, S. T. Vohra, “Ship hull structure monitoring using fibre optic sensors,” Smart Mater. Struct. 10, 472–478 (2001).
[CrossRef]

Kaddu, S. C.

S. C. Kaddu, S. F. Collins, D. J. Booth, “Multiplexed intrinsic optical fibre Fabry–Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[CrossRef]

Karioja, P.

I. Alasaarela, P. Karioja, H. Kopola, “Comparison of distributed fiber optic sensing methods for location and quantity information measurements,” Opt. Eng. 41, 181–189 (2002).
[CrossRef]

Kopola, H.

I. Alasaarela, P. Karioja, H. Kopola, “Comparison of distributed fiber optic sensing methods for location and quantity information measurements,” Opt. Eng. 41, 181–189 (2002).
[CrossRef]

Koyamada, Y.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

Kuchuk, F.

T. Unneland, Y. Manin, F. Kuchuk, “Permanent gauge pressure and rate measurements for reservoir description and well monitoring: field cases,” SPE Reservoir Eval. Eng. 3, 224–230 (1988).

Kuh, K.

S. Grosswig, E. Hurtig, K. Kuh, F. Rudolph, “Distributed fibre-optic temperature sensing technique (DTS) for surveying underground gas storage facilities,” Oil Gas Eur. Mag. 27 (4), 31–34 (2001).

Lait, J.

A. J. Hymans, J. Lait, “Analysis of a frequency-modulated continuous-wave ranging system,” Proc. Inst. Electr. Eng. 107 B, 365–372 (1960).

Lee, C. E.

Lee, D.

Lee, J.

Lee, W.

Manin, Y.

T. Unneland, Y. Manin, F. Kuchuk, “Permanent gauge pressure and rate measurements for reservoir description and well monitoring: field cases,” SPE Reservoir Eval. Eng. 3, 224–230 (1988).

Mufti, A. A.

R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, “Structure health monitoring of innovative bridges in Canada with fiber optic sensors,” Smart Mater. Struct. 10, 560–573 (2001).
[CrossRef]

Oh, J. M.

Payne, D. N.

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grundinin, D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

Porte, H.

F. Chollet, J. P. Goedgebuer, H. Porte, A. Hamel, “Electro-optic narrow linewidth tuning and intensity modulation of an erbium fiber ring laser,” IEEE Photon. Technol. Lett. 8, 1009–1011 (1996).
[CrossRef]

Pran, K.

G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, S. T. Vohra, “Ship hull structure monitoring using fibre optic sensors,” Smart Mater. Struct. 10, 472–478 (2001).
[CrossRef]

Rand, J. D.

C. M. Davis, C. J. Zarobila, J. D. Rand, “Fiber-optic temperature sensor for microwave environments,” in Optical Fibers in Medicine III, A. Katzir, ed., Proc. SPIE906, 114–118 (1988).

Rizkalla, S.

R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, “Structure health monitoring of innovative bridges in Canada with fiber optic sensors,” Smart Mater. Struct. 10, 560–573 (2001).
[CrossRef]

Rudolph, F.

S. Grosswig, E. Hurtig, K. Kuh, F. Rudolph, “Distributed fibre-optic temperature sensing technique (DTS) for surveying underground gas storage facilities,” Oil Gas Eur. Mag. 27 (4), 31–34 (2001).

Sadkowski, R.

Sagvolden, G.

G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, S. T. Vohra, “Ship hull structure monitoring using fibre optic sensors,” Smart Mater. Struct. 10, 472–478 (2001).
[CrossRef]

Shimizu, K.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

Singh, M.

M. Singh, C. J. Tuck, G. F. Fernando, “Multiplexed optic fiber Fabry–Perot sensors for strain metrology,” Smart Mater. Struct. 8, 549–553 (1999).
[CrossRef]

Swenson, V.

Tadros, G.

R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, “Structure health monitoring of innovative bridges in Canada with fiber optic sensors,” Smart Mater. Struct. 10, 560–573 (2001).
[CrossRef]

Taylor, H. F.

Tennyson, R. C.

R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, “Structure health monitoring of innovative bridges in Canada with fiber optic sensors,” Smart Mater. Struct. 10, 560–573 (2001).
[CrossRef]

Tsuji, K.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

Tuck, C. J.

M. Singh, C. J. Tuck, G. F. Fernando, “Multiplexed optic fiber Fabry–Perot sensors for strain metrology,” Smart Mater. Struct. 8, 549–553 (1999).
[CrossRef]

Unneland, T.

T. Unneland, Y. Manin, F. Kuchuk, “Permanent gauge pressure and rate measurements for reservoir description and well monitoring: field cases,” SPE Reservoir Eval. Eng. 3, 224–230 (1988).

Uttam, D.

D. Uttam, B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3, 971–977 (1985).
[CrossRef]

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent optical-fibre sensors with modulated laser sources,” Electron. Lett. 19, 14–15 (1983).
[CrossRef]

Vohra, S. T.

G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, S. T. Vohra, “Ship hull structure monitoring using fibre optic sensors,” Smart Mater. Struct. 10, 472–478 (2001).
[CrossRef]

Wang, G.

G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, S. T. Vohra, “Ship hull structure monitoring using fibre optic sensors,” Smart Mater. Struct. 10, 472–478 (2001).
[CrossRef]

Zarobila, C. J.

C. M. Davis, C. J. Zarobila, J. D. Rand, “Fiber-optic temperature sensor for microwave environments,” in Optical Fibers in Medicine III, A. Katzir, ed., Proc. SPIE906, 114–118 (1988).

Zervas, M. N.

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grundinin, D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (3)

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24, 193–194 (1988).
[CrossRef]

I. P. Giles, D. Uttam, B. Culshaw, D. E. N. Davies, “Coherent optical-fibre sensors with modulated laser sources,” Electron. Lett. 19, 14–15 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grundinin, D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

F. Chollet, J. P. Goedgebuer, H. Porte, A. Hamel, “Electro-optic narrow linewidth tuning and intensity modulation of an erbium fiber ring laser,” IEEE Photon. Technol. Lett. 8, 1009–1011 (1996).
[CrossRef]

J. Lightwave Technol. (1)

D. Uttam, B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3, 971–977 (1985).
[CrossRef]

Meas. Sci. Technol. (1)

S. C. Kaddu, S. F. Collins, D. J. Booth, “Multiplexed intrinsic optical fibre Fabry–Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[CrossRef]

Oil Gas Eur. Mag. (1)

S. Grosswig, E. Hurtig, K. Kuh, F. Rudolph, “Distributed fibre-optic temperature sensing technique (DTS) for surveying underground gas storage facilities,” Oil Gas Eur. Mag. 27 (4), 31–34 (2001).

Opt. Eng. (1)

I. Alasaarela, P. Karioja, H. Kopola, “Comparison of distributed fiber optic sensing methods for location and quantity information measurements,” Opt. Eng. 41, 181–189 (2002).
[CrossRef]

Opt. Lett. (3)

Proc. Inst. Electr. Eng. (1)

A. J. Hymans, J. Lait, “Analysis of a frequency-modulated continuous-wave ranging system,” Proc. Inst. Electr. Eng. 107 B, 365–372 (1960).

Smart Mater. Struct. (3)

M. Singh, C. J. Tuck, G. F. Fernando, “Multiplexed optic fiber Fabry–Perot sensors for strain metrology,” Smart Mater. Struct. 8, 549–553 (1999).
[CrossRef]

R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, B. Benmokrane, “Structure health monitoring of innovative bridges in Canada with fiber optic sensors,” Smart Mater. Struct. 10, 560–573 (2001).
[CrossRef]

G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, S. T. Vohra, “Ship hull structure monitoring using fibre optic sensors,” Smart Mater. Struct. 10, 472–478 (2001).
[CrossRef]

SPE Reservoir Eval. Eng. (1)

T. Unneland, Y. Manin, F. Kuchuk, “Permanent gauge pressure and rate measurements for reservoir description and well monitoring: field cases,” SPE Reservoir Eval. Eng. 3, 224–230 (1988).

Other (2)

C. M. Davis, C. J. Zarobila, J. D. Rand, “Fiber-optic temperature sensor for microwave environments,” in Optical Fibers in Medicine III, A. Katzir, ed., Proc. SPIE906, 114–118 (1988).

H. F. Taylor, “Fiber optic Fabry–Perot sensors,” in Fiber Optic Sensors, F. T. Y. Yu, ed. (Marcel Dekker, New York, 2002), pp. 41–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the determination of the OPDs of reference and sensor fiber Fabry–Perot interferometers (FFPIs).

Fig. 2
Fig. 2

Reflected signal over a portion of a laser frequency scan for (a) reference FFPI, (b) three multiplexed sensing FFPIs.

Fig. 3
Fig. 3

Fourier transfer amplitude obtained from the sensor scan data (main plot) and the reference interferometer scan (inset).

Fig. 4
Fig. 4

Data for 30 consecutive laser scans, showing (a)–(c) variations in the interferometer delay time τ for the sensors and (d) variations in the phase determined for one of the sensors.

Fig. 5
Fig. 5

Variation in OPD of S2-FFPI during a heating and cooling cycle.

Tables (1)

Tables Icon

Table 1 OPD Measurement Resolution Using Fourier Transform Amplitude Information Only and Using Both Amplitude and Phase Information

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Is=C0+j=0j=NCj cosϕj,
ϕj=2πνDj/c,
Asτ=vavbIsvexp-2πiτv-vadv,
|Asτ|2=Cj2 sin2πτj-τva-vb/2πτj-τ2.
Asτj=Asτjexpiϕjva.
Δτ=2/vb-va,
ΔDj=2c/vb-va.
ΔDj=2λava/vb-va.
Ir=C0+Cr cosϕr,
Dj=Drτj/τr.
Dj=Dr+cϕjva-ϕrva/2πva.
DR=Lc/ΔOPD,

Metrics