Abstract

Infrared hollow waveguides utilizing a dielectric multilayer are examined by use of a photonic bandgap theory. It is shown that, in the waveguide consisting of quarter-wave film stack, the act of covering the dielectric films with a metal layer is effective in the reduction of the number of film layers. To verify the effect of this design, we fabricated a prototype waveguide with three dielectric layers of SiO2/Ta2O5/SiO2 and a silver layer by using a liquid-phase coating technique. From the loss spectrum of the fabricated waveguide, it is confirmed that, as designed, the waveguide shows wideband low-loss property at the wavelength of Nd:YAG laser light 1.06 µm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Ouyang, Y. Xu, A. Yariv, “Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics,” Opt. Express 9, 733–747 (2001), http://www.opticsexpress.org .
  2. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041 (1999).
    [CrossRef]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  4. J. Broeng, S. E. Barkou, T. Sondergaard, A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).
    [CrossRef]
  5. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, C. Martijn de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method” Opt. Express 9, 721–732 (2001), http://www.opticsexpress.org .
    [CrossRef]
  6. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N.J.; 1995).
  7. P. Yeh, A. Yariv, C. S. Hong, “Electromagnetic propagation in periodic stratified media,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [CrossRef]
  8. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  9. R. Saito, K. Kuwano, T. Tobe, “Synthesis of poly(methyl mthacrylate)-silica nano-composite,” J. Macromol. Sci. Pure Appl. Chem. 39, 171–182 (2002).
    [CrossRef]
  10. C. Chaneliere, J. L. Autran, R. A. B. Devine, B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. R22, 269–322 (1998).
  11. A. Cappellani, J. L. Keddie, N. P. Barradas, S. M. Jackson, “Processing and characterization of sol-gel deposited Ta2O5 and TiO2-Ta2O5 dielectric thin films,” Solid-State Electron. 43, 1095–1099 (1999).
    [CrossRef]
  12. Y. Matsuura, M. Saito, M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]

2002 (1)

R. Saito, K. Kuwano, T. Tobe, “Synthesis of poly(methyl mthacrylate)-silica nano-composite,” J. Macromol. Sci. Pure Appl. Chem. 39, 171–182 (2002).
[CrossRef]

2001 (2)

2000 (1)

1999 (3)

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

A. Cappellani, J. L. Keddie, N. P. Barradas, S. M. Jackson, “Processing and characterization of sol-gel deposited Ta2O5 and TiO2-Ta2O5 dielectric thin films,” Solid-State Electron. 43, 1095–1099 (1999).
[CrossRef]

1998 (1)

C. Chaneliere, J. L. Autran, R. A. B. Devine, B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. R22, 269–322 (1998).

1989 (1)

1984 (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1977 (1)

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Autran, J. L.

C. Chaneliere, J. L. Autran, R. A. B. Devine, B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. R22, 269–322 (1998).

Balland, B.

C. Chaneliere, J. L. Autran, R. A. B. Devine, B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. R22, 269–322 (1998).

Barkou, S. E.

Barradas, N. P.

A. Cappellani, J. L. Keddie, N. P. Barradas, S. M. Jackson, “Processing and characterization of sol-gel deposited Ta2O5 and TiO2-Ta2O5 dielectric thin films,” Solid-State Electron. 43, 1095–1099 (1999).
[CrossRef]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Bjarklev, A.

Botten, L. C.

Broeng, J.

Cappellani, A.

A. Cappellani, J. L. Keddie, N. P. Barradas, S. M. Jackson, “Processing and characterization of sol-gel deposited Ta2O5 and TiO2-Ta2O5 dielectric thin films,” Solid-State Electron. 43, 1095–1099 (1999).
[CrossRef]

Chaneliere, C.

C. Chaneliere, J. L. Autran, R. A. B. Devine, B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. R22, 269–322 (1998).

Chen, C.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Devine, R. A. B.

C. Chaneliere, J. L. Autran, R. A. B. Devine, B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. R22, 269–322 (1998).

Fan, S.

Fink, Y.

Hong, C. S.

Jackson, S. M.

A. Cappellani, J. L. Keddie, N. P. Barradas, S. M. Jackson, “Processing and characterization of sol-gel deposited Ta2O5 and TiO2-Ta2O5 dielectric thin films,” Solid-State Electron. 43, 1095–1099 (1999).
[CrossRef]

Joannopoulos, J. D.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041 (1999).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N.J.; 1995).

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Keddie, J. L.

A. Cappellani, J. L. Keddie, N. P. Barradas, S. M. Jackson, “Processing and characterization of sol-gel deposited Ta2O5 and TiO2-Ta2O5 dielectric thin films,” Solid-State Electron. 43, 1095–1099 (1999).
[CrossRef]

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Kuwano, K.

R. Saito, K. Kuwano, T. Tobe, “Synthesis of poly(methyl mthacrylate)-silica nano-composite,” J. Macromol. Sci. Pure Appl. Chem. 39, 171–182 (2002).
[CrossRef]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Martijn de Sterke, C.

Matsuura, Y.

McPhedran, R. C.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N.J.; 1995).

Miyagi, M.

Y. Matsuura, M. Saito, M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Ouyang, G.

Ripin, D. J.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Saito, M.

Saito, R.

R. Saito, K. Kuwano, T. Tobe, “Synthesis of poly(methyl mthacrylate)-silica nano-composite,” J. Macromol. Sci. Pure Appl. Chem. 39, 171–182 (2002).
[CrossRef]

Smith, G. H.

Sondergaard, T.

Thomas, E. L.

Tobe, T.

R. Saito, K. Kuwano, T. Tobe, “Synthesis of poly(methyl mthacrylate)-silica nano-composite,” J. Macromol. Sci. Pure Appl. Chem. 39, 171–182 (2002).
[CrossRef]

White, T. P.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N.J.; 1995).

Xu, Y.

Yariv, A.

Yeh, P.

J. Lightwave Technol. (2)

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041 (1999).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Macromol. Sci. Pure Appl. Chem. (1)

R. Saito, K. Kuwano, T. Tobe, “Synthesis of poly(methyl mthacrylate)-silica nano-composite,” J. Macromol. Sci. Pure Appl. Chem. 39, 171–182 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Mater. Sci. Eng. (1)

C. Chaneliere, J. L. Autran, R. A. B. Devine, B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. R22, 269–322 (1998).

Opt. Express (2)

Opt. Lett. (1)

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Solid-State Electron. (1)

A. Cappellani, J. L. Keddie, N. P. Barradas, S. M. Jackson, “Processing and characterization of sol-gel deposited Ta2O5 and TiO2-Ta2O5 dielectric thin films,” Solid-State Electron. 43, 1095–1099 (1999).
[CrossRef]

Other (1)

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N.J.; 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Projected band structure for a quarter-wave stack designed for the grazing incidence of Nd:YAG laser light. Film materials are SiO2 (n = 1.45) and Ta2O5 (n = 1.98).

Fig. 2
Fig. 2

Theoretical losses of the HE11 mode in hollow waveguides with an inner diameter of 530 µm at the 1.06-µm Nd:YAG laser wavelength.

Fig. 3
Fig. 3

Calculated loss spectra of the HE11 mode in the all-dielectric structure waveguide (inner diameter, 530 µm) having 37 dielectric films and the Ag-covered structure having 5 dielectric films. In the Ag-covered structure, the thickness of the innermost layer is compensated by use of Eq. (1).

Fig. 4
Fig. 4

Relationship between the solution flow rate and the thickness of deposited dielectric films.

Fig. 5
Fig. 5

Scanning electron microscopes micrographs of the cross section of the waveguide (inner diameter, 530 µm) with three dielectric layers. (a) whole section and (b) magnified layer structure.

Fig. 6
Fig. 6

Measured and calculated loss spectra of the hollow waveguide having three dielectric layers. The waveguide is excited by a Gaussian beam with a divergence angle of 10.6° at FWHM. The length and the inner diameter of the waveguide are 10 cm and 530 µm, respectively.

Tables (1)

Tables Icon

Table 1 Optimum Composition of the Ta2O5 Sol-Solution

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d=λ2πn12-11/2tan-1n1n12-11/4n1n2mC-m2,
C=n12-1n22-1.
-SiH2NH-+2H2O · SiO2+NH3+2H2.

Metrics