Abstract

Using the time-independent power-flow equation, we have examined the mode coupling caused by intrinsic perturbation effects of step-index plastic clad silica fiber carrying more than 105 modes. Results show that the equilibrium mode distribution for this fiber is achieved at a length of approximately 550 m, which is longer than reported previously. While this coupling length is much longer than that of plastic optical fibers, it is shorter than that of all-glass fibers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Eve, J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide. I.,” Opt. Quantum Electron. 8, 503–508 (1976).
    [CrossRef]
  2. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).
    [CrossRef]
  3. W. A. Gambling, D. N. Payne, H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, 1538–1542 (1975).
    [CrossRef] [PubMed]
  4. M. Rousseau, L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977).
    [CrossRef]
  5. A. Djordjevich, S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000).
    [CrossRef]
  6. V. Ruddy, G. Shaw, “Mode coupling in large-diameter polymer-clad silica fibers,” Appl. Opt. 34, 1003–1006 (1995).
    [CrossRef] [PubMed]
  7. L. Jeunhomme, M. Fraise, J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040–3046 (1976).
    [CrossRef] [PubMed]
  8. R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt. 14, 935–945 (1975).
    [CrossRef] [PubMed]
  9. A. F. Garito, J. Wang, R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
    [CrossRef] [PubMed]
  10. G. Herskowitz, H. Kobrinski, U. Levy, “Optical power distribution in multimode fibers with angular-dependent mode coupling,” J. Lightwave Technol. LT-2, 548–554 (1983).
    [CrossRef]
  11. G. Jiang, R. F. Shi, A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photon. Technol. Lett. 9, 1128–1130 (1997).
    [CrossRef]
  12. E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, “The length dependence of pulse spreading in the CGW-Bell-10 optical fiber,” Proc. IEEE 61, 1499–1500 (1973).
    [CrossRef]

2000

A. Djordjevich, S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000).
[CrossRef]

1998

A. F. Garito, J. Wang, R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[CrossRef] [PubMed]

1997

G. Jiang, R. F. Shi, A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photon. Technol. Lett. 9, 1128–1130 (1997).
[CrossRef]

1995

1983

G. Herskowitz, H. Kobrinski, U. Levy, “Optical power distribution in multimode fibers with angular-dependent mode coupling,” J. Lightwave Technol. LT-2, 548–554 (1983).
[CrossRef]

1977

M. Rousseau, L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977).
[CrossRef]

1976

M. Eve, J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide. I.,” Opt. Quantum Electron. 8, 503–508 (1976).
[CrossRef]

L. Jeunhomme, M. Fraise, J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040–3046 (1976).
[CrossRef] [PubMed]

1975

1973

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, “The length dependence of pulse spreading in the CGW-Bell-10 optical fiber,” Proc. IEEE 61, 1499–1500 (1973).
[CrossRef]

1972

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).
[CrossRef]

Chinnock, E. L.

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, “The length dependence of pulse spreading in the CGW-Bell-10 optical fiber,” Proc. IEEE 61, 1499–1500 (1973).
[CrossRef]

Cohen, L. G.

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, “The length dependence of pulse spreading in the CGW-Bell-10 optical fiber,” Proc. IEEE 61, 1499–1500 (1973).
[CrossRef]

Djordjevich, A.

A. Djordjevich, S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000).
[CrossRef]

Eve, M.

M. Eve, J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide. I.,” Opt. Quantum Electron. 8, 503–508 (1976).
[CrossRef]

Fraise, M.

Gambling, W. A.

Gao, R.

A. F. Garito, J. Wang, R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[CrossRef] [PubMed]

Garito, A. F.

A. F. Garito, J. Wang, R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[CrossRef] [PubMed]

G. Jiang, R. F. Shi, A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photon. Technol. Lett. 9, 1128–1130 (1997).
[CrossRef]

Gloge, D.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).
[CrossRef]

Hannay, J. H.

M. Eve, J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide. I.,” Opt. Quantum Electron. 8, 503–508 (1976).
[CrossRef]

Herskowitz, G.

G. Herskowitz, H. Kobrinski, U. Levy, “Optical power distribution in multimode fibers with angular-dependent mode coupling,” J. Lightwave Technol. LT-2, 548–554 (1983).
[CrossRef]

Holden, W. S.

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, “The length dependence of pulse spreading in the CGW-Bell-10 optical fiber,” Proc. IEEE 61, 1499–1500 (1973).
[CrossRef]

Jeunhomme, L.

M. Rousseau, L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977).
[CrossRef]

L. Jeunhomme, M. Fraise, J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040–3046 (1976).
[CrossRef] [PubMed]

Jiang, G.

G. Jiang, R. F. Shi, A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photon. Technol. Lett. 9, 1128–1130 (1997).
[CrossRef]

Keck, D. B.

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, “The length dependence of pulse spreading in the CGW-Bell-10 optical fiber,” Proc. IEEE 61, 1499–1500 (1973).
[CrossRef]

Kobrinski, H.

G. Herskowitz, H. Kobrinski, U. Levy, “Optical power distribution in multimode fibers with angular-dependent mode coupling,” J. Lightwave Technol. LT-2, 548–554 (1983).
[CrossRef]

Levy, U.

G. Herskowitz, H. Kobrinski, U. Levy, “Optical power distribution in multimode fibers with angular-dependent mode coupling,” J. Lightwave Technol. LT-2, 548–554 (1983).
[CrossRef]

Matsumura, H.

Olshansky, R.

Payne, D. N.

Pocholle, J. P.

Rousseau, M.

M. Rousseau, L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977).
[CrossRef]

Ruddy, V.

Savovic, S.

A. Djordjevich, S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000).
[CrossRef]

Shaw, G.

Shi, R. F.

G. Jiang, R. F. Shi, A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photon. Technol. Lett. 9, 1128–1130 (1997).
[CrossRef]

Standley, R. D.

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, “The length dependence of pulse spreading in the CGW-Bell-10 optical fiber,” Proc. IEEE 61, 1499–1500 (1973).
[CrossRef]

Wang, J.

A. F. Garito, J. Wang, R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[CrossRef] [PubMed]

Appl. Opt.

Bell Syst. Tech. J.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Djordjevich, S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000).
[CrossRef]

G. Jiang, R. F. Shi, A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photon. Technol. Lett. 9, 1128–1130 (1997).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. Rousseau, L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977).
[CrossRef]

J. Lightwave Technol.

G. Herskowitz, H. Kobrinski, U. Levy, “Optical power distribution in multimode fibers with angular-dependent mode coupling,” J. Lightwave Technol. LT-2, 548–554 (1983).
[CrossRef]

Opt. Quantum Electron.

M. Eve, J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide. I.,” Opt. Quantum Electron. 8, 503–508 (1976).
[CrossRef]

Proc. IEEE

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, “The length dependence of pulse spreading in the CGW-Bell-10 optical fiber,” Proc. IEEE 61, 1499–1500 (1973).
[CrossRef]

Science

A. F. Garito, J. Wang, R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Normalized output angular power distribution at different fiber lengths calculated for three Gaussian input angles θ0 = 0° (solid curve), 5° (dashed curve), 10° (dotted curve) with width ϕ0 = 2.5° for z (a) 1; (b) 115; (c) 550; and (d) 1400 m (steady-state distribution).

Fig. 2
Fig. 2

Theoretical variation of the normalized FWHM Φ/θ c of P(θ, z) with the fourth root of the normalized fiber length Z(= Dz c 2) (Ref. 6).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Pθ, zz=-αθPθ, z+Δθ21θθθdθPθ, zθ,
Pθ, zz=Δθ21θθθdθPθ, zθ.
dθ=d0θcθ2q,
Pθ, zz=Dθc2θθ1θPθ, zθ
Pθ, zz=Dθc2θ22Pθ, zθ2-1θPθ, zθ.
Pθ, z=A16Dθc2z+ϕ0416Dθc41/2×exp-θ2-θ02216Dθc2z+ϕ04-exp-θ2-2θc2+θ02216Dθc2z+ϕ04,
Pθ, zAθc24Dz3/21-θ02θc21-θ2θc2.

Metrics