Abstract

Compensation of thermally induced birefringence directed toward compensation of depolarization and bifocusing in laser rods is treated with simple beam transfer matrices. When we apply a 90-deg polarization-rotating element to a resonator, the radial and the tangential eigensolutions of the resonator change significantly. The effect of this alteration on the resonator’s stability is investigated in detail. The outcome is used to design a single- and double-rod resonator resulting in 53 W with an M 2 ≈ 1.5 and 182 W of output power with an M 2 ≈ 1.2, respectively.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Auyeng, D. Fekete, D. M. Pepper, A. Yariv, “Theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors,” IEEE J. Quantum Electron. QE-15, 1180–1188 (1979).
    [CrossRef]
  2. M. D. Skeldon, R. W. Boyd, “Transverse-mode structure of a phase-conjugate oscillator based on Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 588–594 (1989).
    [CrossRef]
  3. A. Drobnik, L. Wolf, “Influence of self-focusing on the operation of a neodymium glass laser,” Sov. J. Quantum Electron. 8, 274–275 (1978).
    [CrossRef]
  4. M. Ostermeyer, A. Heuer, R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
    [CrossRef]
  5. S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
    [CrossRef]
  6. J. D. Foster, L. M. Osterink, “Thermal effects in Nd:YAG lasers,” J. Appl. Phys. 41, 3656–3663 (1970).
    [CrossRef]
  7. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
    [CrossRef]
  8. A. Giesen, U. Brauch, I. Johannsen, M. Karszewski, C. Stewen, A. Voss, “High-power near diffraction-limited and single-frequency operation of Yb:YAG thin disc laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 11–13.
  9. G. A. Massey, “Criterion for selection of cw-laser host materials to increase available powers in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
    [CrossRef]
  10. M. Ostermeyer, R. Menzel, “Single rod efficient Nd:YAG and Nd:YALO-lasers with average output powers of 46 and 47 W in diffraction limited beams with M2 < 1.2 and 100 W with M2 < 3.7,” Opt. Commun. 160, 251–254 (1999).
    [CrossRef]
  11. W. C. Scott, M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG Laser,” Appl. Phys. Lett. 18, 3–4 (1971).
    [CrossRef]
  12. S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, “Optimized resonators for high-average-power, high-brightness Nd:YAG lasers with birefringence compensation,” in Laser Resonators, A. V. Kudryashov, P. Talarneau, eds., Proc. SPIE3267, 214–225 (1998).
  13. G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
    [CrossRef]
  14. V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).
  15. M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
    [CrossRef]
  16. N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik. “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991).
    [CrossRef]
  17. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996).
    [CrossRef]
  18. J. Sherman, “Thermal compensation of a cw-pumped Nd:YAG laser,” Appl. Opt. 37, 7789–7796 (1998).
    [CrossRef]
  19. C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid-State Lasers, M. M. Fejer, N. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.
  20. W. A. Clarkson, N. S. Felgate, D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999).
    [CrossRef]
  21. R. Fluck, M. R. Hermann, L. A. Hackel, “Birefringence compensation in single solid-state rods,” Appl. Physl. Lett. 76, 1513–1515 (2000).
    [CrossRef]
  22. R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
    [CrossRef]
  23. K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped with randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000).
  24. E. Khazanov, A. Potemkin, E. Katin, “Compensation for birefringence in active elements of solid-state lasers: novel method,” J. Opt. Soc. Am. B 19, 667–671 (2002).
    [CrossRef]
  25. For example, for a typical rod length of 100 mm h = 1/2n = 28 mm at 500-W pump power for a rod with 6 diopters/(kW pump power) a focal length of the thermal lens of f = 330 mm results, hence f2 ≅ (10*h)2 ≫ h2).
  26. W. Koechner, D. Rice, “Birefringence of Nd:YAG laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758–766 (1971).
    [CrossRef]
  27. H. J. Eichler, A. Haase, R. Menzel, A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
    [CrossRef]
  28. S. Konno, S. Fujikawa, K. Yasui, “80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser,” Appl. Phys. Lett. 70, 2650–2651 (1997).
    [CrossRef]
  29. Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, T. Tajime, “208-W TEM00 operation of a diode-pumped Nd:YAG rod laser,” Opt. Lett. 24, 679–681 (1999).
    [CrossRef]
  30. E. A. Khazanov, “A new Faraday rotator for high average output power lasers,” Quantum Electron. 31, 351–356 (2001).
    [CrossRef]
  31. E. Khazanov, A. Anastasiyev, N. Andreev, A. Voytovich, O. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
    [CrossRef] [PubMed]

2002 (2)

2001 (1)

E. A. Khazanov, “A new Faraday rotator for high average output power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

2000 (2)

R. Fluck, M. R. Hermann, L. A. Hackel, “Birefringence compensation in single solid-state rods,” Appl. Physl. Lett. 76, 1513–1515 (2000).
[CrossRef]

R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

1999 (4)

M. Ostermeyer, R. Menzel, “Single rod efficient Nd:YAG and Nd:YALO-lasers with average output powers of 46 and 47 W in diffraction limited beams with M2 < 1.2 and 100 W with M2 < 3.7,” Opt. Commun. 160, 251–254 (1999).
[CrossRef]

S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, T. Tajime, “208-W TEM00 operation of a diode-pumped Nd:YAG rod laser,” Opt. Lett. 24, 679–681 (1999).
[CrossRef]

W. A. Clarkson, N. S. Felgate, D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999).
[CrossRef]

1998 (2)

J. Sherman, “Thermal compensation of a cw-pumped Nd:YAG laser,” Appl. Opt. 37, 7789–7796 (1998).
[CrossRef]

M. Ostermeyer, A. Heuer, R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

1997 (1)

S. Konno, S. Fujikawa, K. Yasui, “80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser,” Appl. Phys. Lett. 70, 2650–2651 (1997).
[CrossRef]

1996 (1)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

1993 (1)

H. J. Eichler, A. Haase, R. Menzel, A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

1991 (1)

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik. “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991).
[CrossRef]

1989 (2)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

M. D. Skeldon, R. W. Boyd, “Transverse-mode structure of a phase-conjugate oscillator based on Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 588–594 (1989).
[CrossRef]

1987 (1)

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

1984 (1)

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

1980 (1)

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

1979 (1)

J. Auyeng, D. Fekete, D. M. Pepper, A. Yariv, “Theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors,” IEEE J. Quantum Electron. QE-15, 1180–1188 (1979).
[CrossRef]

1978 (1)

A. Drobnik, L. Wolf, “Influence of self-focusing on the operation of a neodymium glass laser,” Sov. J. Quantum Electron. 8, 274–275 (1978).
[CrossRef]

1971 (2)

W. C. Scott, M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG Laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

W. Koechner, D. Rice, “Birefringence of Nd:YAG laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758–766 (1971).
[CrossRef]

1970 (2)

G. A. Massey, “Criterion for selection of cw-laser host materials to increase available powers in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

J. D. Foster, L. M. Osterink, “Thermal effects in Nd:YAG lasers,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Anastasiyev, A.

Andreev, N.

E. Khazanov, A. Anastasiyev, N. Andreev, A. Voytovich, O. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef] [PubMed]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik. “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991).
[CrossRef]

Auyeng, J.

J. Auyeng, D. Fekete, D. M. Pepper, A. Yariv, “Theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors,” IEEE J. Quantum Electron. QE-15, 1180–1188 (1979).
[CrossRef]

Bondarenco, N. G.

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik. “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991).
[CrossRef]

Boyd, R. W.

M. D. Skeldon, R. W. Boyd, “Transverse-mode structure of a phase-conjugate oscillator based on Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 588–594 (1989).
[CrossRef]

Brauch, U.

A. Giesen, U. Brauch, I. Johannsen, M. Karszewski, C. Stewen, A. Voss, “High-power near diffraction-limited and single-frequency operation of Yb:YAG thin disc laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 11–13.

Byer, R. L.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

Clarkson, W. A.

de Wit, M.

W. C. Scott, M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG Laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Denman, C. A.

C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid-State Lasers, M. M. Fejer, N. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.

Dong, S.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Drobnik, A.

A. Drobnik, L. Wolf, “Influence of self-focusing on the operation of a neodymium glass laser,” Sov. J. Quantum Electron. 8, 274–275 (1978).
[CrossRef]

Eggleston, J. M.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

Eichler, H. J.

H. J. Eichler, A. Haase, R. Menzel, A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Eremina, I. V.

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik. “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991).
[CrossRef]

Fekete, D.

J. Auyeng, D. Fekete, D. M. Pepper, A. Yariv, “Theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors,” IEEE J. Quantum Electron. QE-15, 1180–1188 (1979).
[CrossRef]

Felgate, N. S.

Fluck, R.

R. Fluck, M. R. Hermann, L. A. Hackel, “Birefringence compensation in single solid-state rods,” Appl. Physl. Lett. 76, 1513–1515 (2000).
[CrossRef]

Foster, J. D.

J. D. Foster, L. M. Osterink, “Thermal effects in Nd:YAG lasers,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Fujikawa, S.

S. Konno, S. Fujikawa, K. Yasui, “80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser,” Appl. Phys. Lett. 70, 2650–2651 (1997).
[CrossRef]

Gelikonov, V. M.

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

Giesen, A.

A. Giesen, U. Brauch, I. Johannsen, M. Karszewski, C. Stewen, A. Voss, “High-power near diffraction-limited and single-frequency operation of Yb:YAG thin disc laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 11–13.

Giuliani, G.

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Gusovskii, D. D.

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

Haase, A.

H. J. Eichler, A. Haase, R. Menzel, A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Hackel, L. A.

R. Fluck, M. R. Hermann, L. A. Hackel, “Birefringence compensation in single solid-state rods,” Appl. Physl. Lett. 76, 1513–1515 (2000).
[CrossRef]

Hanna, D. C.

Hermann, M. R.

R. Fluck, M. R. Hermann, L. A. Hackel, “Birefringence compensation in single solid-state rods,” Appl. Physl. Lett. 76, 1513–1515 (2000).
[CrossRef]

Heuer, A.

M. Ostermeyer, A. Heuer, R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

Hirano, Y.

Hua, R.

R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

Johannsen, I.

A. Giesen, U. Brauch, I. Johannsen, M. Karszewski, C. Stewen, A. Voss, “High-power near diffraction-limited and single-frequency operation of Yb:YAG thin disc laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 11–13.

Kane, T. J.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

Karszewski, M.

A. Giesen, U. Brauch, I. Johannsen, M. Karszewski, C. Stewen, A. Voss, “High-power near diffraction-limited and single-frequency operation of Yb:YAG thin disc laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 11–13.

Kasahara, K.

Katin, E.

Khazanov, E.

Khazanov, E. A.

E. A. Khazanov, “A new Faraday rotator for high average output power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

Koechner, W.

Konno, S.

S. Konno, S. Fujikawa, K. Yasui, “80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser,” Appl. Phys. Lett. 70, 2650–2651 (1997).
[CrossRef]

Koyata, Y.

Kugler, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Kuhn, K.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

Kuznetsov, S. V.

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik. “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991).
[CrossRef]

Lai, K. S.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped with randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000).

Leger, J.

S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

Leonov, V. I.

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

Libby, S. I.

C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid-State Lasers, M. M. Fejer, N. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.

Lü, Q.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Makki, S.

S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

Mann, G.

S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, “Optimized resonators for high-average-power, high-brightness Nd:YAG lasers with birefringence compensation,” in Laser Resonators, A. V. Kudryashov, P. Talarneau, eds., Proc. SPIE3267, 214–225 (1998).

Martinelli, M.

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Massey, G. A.

G. A. Massey, “Criterion for selection of cw-laser host materials to increase available powers in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

Menzel, R.

M. Ostermeyer, R. Menzel, “Single rod efficient Nd:YAG and Nd:YALO-lasers with average output powers of 46 and 47 W in diffraction limited beams with M2 < 1.2 and 100 W with M2 < 3.7,” Opt. Commun. 160, 251–254 (1999).
[CrossRef]

M. Ostermeyer, A. Heuer, R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

H. J. Eichler, A. Haase, R. Menzel, A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Müller, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Novikov, M. A.

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

Nursianni,

S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, “Optimized resonators for high-average-power, high-brightness Nd:YAG lasers with birefringence compensation,” in Laser Resonators, A. V. Kudryashov, P. Talarneau, eds., Proc. SPIE3267, 214–225 (1998).

Osterink, L. M.

J. D. Foster, L. M. Osterink, “Thermal effects in Nd:YAG lasers,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Ostermeyer, M.

M. Ostermeyer, R. Menzel, “Single rod efficient Nd:YAG and Nd:YALO-lasers with average output powers of 46 and 47 W in diffraction limited beams with M2 < 1.2 and 100 W with M2 < 3.7,” Opt. Commun. 160, 251–254 (1999).
[CrossRef]

M. Ostermeyer, A. Heuer, R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

Palashov, O.

E. Khazanov, A. Anastasiyev, N. Andreev, A. Voytovich, O. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef] [PubMed]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik. “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991).
[CrossRef]

Pasmanik, G.

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik. “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991).
[CrossRef]

Pepper, D. M.

J. Auyeng, D. Fekete, D. M. Pepper, A. Yariv, “Theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors,” IEEE J. Quantum Electron. QE-15, 1180–1188 (1979).
[CrossRef]

Phua, P. B.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped with randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000).

Potemkin, A.

Rice, D.

Riesbeck, T.

S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, “Optimized resonators for high-average-power, high-brightness Nd:YAG lasers with birefringence compensation,” in Laser Resonators, A. V. Kudryashov, P. Talarneau, eds., Proc. SPIE3267, 214–225 (1998).

Ristori, P.

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Schirrmacher, A.

S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, “Optimized resonators for high-average-power, high-brightness Nd:YAG lasers with birefringence compensation,” in Laser Resonators, A. V. Kudryashov, P. Talarneau, eds., Proc. SPIE3267, 214–225 (1998).

Scott, W. C.

W. C. Scott, M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG Laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Seidel, S.

S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, “Optimized resonators for high-average-power, high-brightness Nd:YAG lasers with birefringence compensation,” in Laser Resonators, A. V. Kudryashov, P. Talarneau, eds., Proc. SPIE3267, 214–225 (1998).

Sherman, J.

Siemoneit, A.

H. J. Eichler, A. Haase, R. Menzel, A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Skeldon, M. D.

M. D. Skeldon, R. W. Boyd, “Transverse-mode structure of a phase-conjugate oscillator based on Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 588–594 (1989).
[CrossRef]

Stewen, C.

A. Giesen, U. Brauch, I. Johannsen, M. Karszewski, C. Stewen, A. Voss, “High-power near diffraction-limited and single-frequency operation of Yb:YAG thin disc laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 11–13.

Tajime, T.

Tashiro, H.

R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

Unternahrer, J.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

Voss, A.

A. Giesen, U. Brauch, I. Johannsen, M. Karszewski, C. Stewen, A. Voss, “High-power near diffraction-limited and single-frequency operation of Yb:YAG thin disc laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 11–13.

Voytovich, A.

Wada, S.

R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

Weber, H.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Wittrock, U.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Wolf, L.

A. Drobnik, L. Wolf, “Influence of self-focusing on the operation of a neodymium glass laser,” Sov. J. Quantum Electron. 8, 274–275 (1978).
[CrossRef]

Wu, R.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped with randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000).

Yamamoto, S.

Yariv, A.

J. Auyeng, D. Fekete, D. M. Pepper, A. Yariv, “Theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors,” IEEE J. Quantum Electron. QE-15, 1180–1188 (1979).
[CrossRef]

Yasui, K.

S. Konno, S. Fujikawa, K. Yasui, “80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser,” Appl. Phys. Lett. 70, 2650–2651 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

S. Konno, S. Fujikawa, K. Yasui, “80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser,” Appl. Phys. Lett. 70, 2650–2651 (1997).
[CrossRef]

G. A. Massey, “Criterion for selection of cw-laser host materials to increase available powers in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

W. C. Scott, M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG Laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Appl. Physl. Lett. (1)

R. Fluck, M. R. Hermann, L. A. Hackel, “Birefringence compensation in single solid-state rods,” Appl. Physl. Lett. 76, 1513–1515 (2000).
[CrossRef]

IEEE J. Quantum Electron. (5)

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

J. Auyeng, D. Fekete, D. M. Pepper, A. Yariv, “Theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors,” IEEE J. Quantum Electron. QE-15, 1180–1188 (1979).
[CrossRef]

M. D. Skeldon, R. W. Boyd, “Transverse-mode structure of a phase-conjugate oscillator based on Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 588–594 (1989).
[CrossRef]

M. Ostermeyer, A. Heuer, R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

J. Appl. Phys. (1)

J. D. Foster, L. M. Osterink, “Thermal effects in Nd:YAG lasers,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

H. J. Eichler, A. Haase, R. Menzel, A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Opt. Commun. (4)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

M. Ostermeyer, R. Menzel, “Single rod efficient Nd:YAG and Nd:YALO-lasers with average output powers of 46 and 47 W in diffraction limited beams with M2 < 1.2 and 100 W with M2 < 3.7,” Opt. Commun. 160, 251–254 (1999).
[CrossRef]

R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Quantum Electron. (1)

E. A. Khazanov, “A new Faraday rotator for high average output power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

Sov. J. Quantum Electron. (2)

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik. “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991).
[CrossRef]

A. Drobnik, L. Wolf, “Influence of self-focusing on the operation of a neodymium glass laser,” Sov. J. Quantum Electron. 8, 274–275 (1978).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

Other (5)

S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, “Optimized resonators for high-average-power, high-brightness Nd:YAG lasers with birefringence compensation,” in Laser Resonators, A. V. Kudryashov, P. Talarneau, eds., Proc. SPIE3267, 214–225 (1998).

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped with randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000).

C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid-State Lasers, M. M. Fejer, N. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.

For example, for a typical rod length of 100 mm h = 1/2n = 28 mm at 500-W pump power for a rod with 6 diopters/(kW pump power) a focal length of the thermal lens of f = 330 mm results, hence f2 ≅ (10*h)2 ≫ h2).

A. Giesen, U. Brauch, I. Johannsen, M. Karszewski, C. Stewen, A. Voss, “High-power near diffraction-limited and single-frequency operation of Yb:YAG thin disc laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 11–13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Scheme for the compensation of TIB. In the approximation of the laser rods as thick lenses their principal planes are separated by h from their endfaces. As an optical system denoted by the ABCD matrix a single thin lens and a telescope are considered in the text. x denotes the distance between the lenses and the rods’ endfaces.

Fig. 2
Fig. 2

Demonstration of compensation of TIB for a double-rod setup. Lenses L3 and L4 build a telescope.

Fig. 3
Fig. 3

Setup to test methods for compensation of TIB. ρ denotes the radius of curvature of the cavity end mirror and is equal to twice its focal length.

Fig. 4
Fig. 4

With the setup from Fig. 3, evaluated depolarization levels for various compensation methods.

Fig. 5
Fig. 5

Compensated single-rod resonator and equivalent description as a virtual double-rod resonator.

Fig. 6
Fig. 6

Diagrams of g for the single-rod laser (a) without a Faraday rotator, (b) with a Faraday rotator but without self-imaging, (c) with a Faraday rotator and self-imaging of the laser rod onto itself. All the diagrams were calculated for a pump power range of between 0.38 and 0.8 kW, which corresponds to Fig. 7. The arrows indicate the direction of growing pump power. g 1* and g 2* denote the equivalent g parameters.

Fig. 7
Fig. 7

Beam radius in the laser rod of a single-rod resonator. The tangential eigensolution component is depicted by a solid curve and the radial eigensolution component is depicted by a dashed curve. (a) Without any compensation, (b) with a Faraday rotator but without self-imaging, (c) with a Faraday rotator and self-imaging of the laser rod onto itself.

Fig. 8
Fig. 8

Tangential (solid curve) and radial (dashed curve) eigensolutions of a single-rod resonator depicted as an equivalent double-rod resonator (a) without any compensation, (b) with a Faraday rotator but without imaging, (c) with a Faraday rotator and imaging of the laser rod onto itself at an optical pump power of 720 W. The output coupling mirror was flat. Lens L1 had a focal length of 120 mm.

Fig. 9
Fig. 9

Beam radius in the laser rods of a double-rod resonator. The tangential eigensolution component is depicted by a solid curve and the radial eigensolution component is depicted by a dashed curve. (a) Without any compensation, (b) with a quartz rotator but without imaging, (c) with a quartz rotator and imaging of the laser rods onto each other.

Fig. 10
Fig. 10

Tangential (solid curve) and radial (dashed curve) eigensolutions of a double-rod resonator (a) without any compensation, (b) with a quartz rotator but without imaging, (c) with a quartz rotator and imaging of the laser rods onto each other at 670-W optical pump power per laser head. The resonator mirrors were flat. L1–L4 denote convex lenses, f equals 200 mm.

Fig. 11
Fig. 11

Picture of the diode-pumped laser heads. The laser bars are arranged in a threefold starlike geometry.

Fig. 12
Fig. 12

Inversion density profile across the laser rod of 5-mm diameter: three-dimensional profile (left) and contour plot (right).

Fig. 13
Fig. 13

Output power (left axis) with and without a Faraday rotator and beam quality (right axis) with a Faraday rotator in the horizontal (x) and vertical (y) directions of a single-rod laser. The boundaries of the calculated stability range for the compensated single-rod resonator are marked.

Fig. 14
Fig. 14

Measured output power of the double-rod resonator. The boundaries of the calculated stability range for the compensated single-rod resonator are marked. The inset characterizes the fluctuations of the output power for a period of a few minutes.

Fig. 15
Fig. 15

Measured variation of output power when one of the laser heads was held at a constant pump power and the pump power of the other was varied as indicated on the horizontal axis.

Fig. 16
Fig. 16

Mode pattern for the compensated and uncompensated double-rod resonator

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

0lntanr1z1dz1+0lnradr2z2dz2=0lnradr1z1dz1+0lntanr2z2dz2.
x=f-h+f2-h2,
x=f-h.
ηdep=P1P1+P2.

Metrics