Abstract

Results of lidar modeling based on spatial-angular filtering efficiency criteria are presented. Their analysis shows that the low spatial-angular filtering efficiency of traditional visible and near-infrared systems is an important cause of low signal/background-radiation ratio (SBR) at the photodetector input. The low SBR may be responsible for considerable measurement errors and ensuing the low accuracy of the retrieval of atmospheric optical parameters. As shown, the most effective protection against sky background radiation for groundbased biaxial lidars is the modifying of their angular field according to a spatial-angular filtering efficiency criterion. Some effective approaches to achieve a high filtering efficiency for the receiving system optimization are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (WileyNew York, 1984).
  2. E. D. Hinkley, ed., Laser Monitoring of Atmosphere Vol. 14 of Topics in Applied Physics, (Springler-Verlag, Berlin, 1978).
  3. R. R. Agishev, Protection from Background Clutter in Electro-Optical Systems of Atmosphere Monitoring (Mashinostroenie Press, Moscow, 1994), in Russian.
  4. S. A. Danichkin, I. V. Samokhvalov, “Influence of optical system parameters on lidar characteristics,” Sov. J. Opt. Technol. 46, 5–8 (1979).
  5. V. M. Orlov, I. V. Samokhvalov, G. G. Matvienko, Elements of Light Scattering Theory and Optical Radar (Nauka Press, Novosibirsk, USSR, 1981), in Russian.
  6. A. A. Tikhomirov, “Analysis of methods and technical means of dynamic range compression,” Atmos. Oceanic Opt. 13, 208–219 (2000).
  7. V. E. Lystsev, V. G. Monastyrsky, “Some problems of scattering media photometry,” in Instruments and Methods of Remote Measurements of Atmospheric Optical Parameters (Gidrometeoizdat Press, Leningrad, USSR, 1980), pp. 79–87, in Russian.
  8. V. E. Zuev, B. V. Kaul, I. V. Samokhvalov, Laser Sensing of Industrial Aerosol (Nauka Press, Novosibirsk, USSR, 1986), in Russian.

2000 (1)

A. A. Tikhomirov, “Analysis of methods and technical means of dynamic range compression,” Atmos. Oceanic Opt. 13, 208–219 (2000).

1979 (1)

S. A. Danichkin, I. V. Samokhvalov, “Influence of optical system parameters on lidar characteristics,” Sov. J. Opt. Technol. 46, 5–8 (1979).

Agishev, R. R.

R. R. Agishev, Protection from Background Clutter in Electro-Optical Systems of Atmosphere Monitoring (Mashinostroenie Press, Moscow, 1994), in Russian.

Danichkin, S. A.

S. A. Danichkin, I. V. Samokhvalov, “Influence of optical system parameters on lidar characteristics,” Sov. J. Opt. Technol. 46, 5–8 (1979).

Kaul, B. V.

V. E. Zuev, B. V. Kaul, I. V. Samokhvalov, Laser Sensing of Industrial Aerosol (Nauka Press, Novosibirsk, USSR, 1986), in Russian.

Lystsev, V. E.

V. E. Lystsev, V. G. Monastyrsky, “Some problems of scattering media photometry,” in Instruments and Methods of Remote Measurements of Atmospheric Optical Parameters (Gidrometeoizdat Press, Leningrad, USSR, 1980), pp. 79–87, in Russian.

Matvienko, G. G.

V. M. Orlov, I. V. Samokhvalov, G. G. Matvienko, Elements of Light Scattering Theory and Optical Radar (Nauka Press, Novosibirsk, USSR, 1981), in Russian.

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (WileyNew York, 1984).

Monastyrsky, V. G.

V. E. Lystsev, V. G. Monastyrsky, “Some problems of scattering media photometry,” in Instruments and Methods of Remote Measurements of Atmospheric Optical Parameters (Gidrometeoizdat Press, Leningrad, USSR, 1980), pp. 79–87, in Russian.

Orlov, V. M.

V. M. Orlov, I. V. Samokhvalov, G. G. Matvienko, Elements of Light Scattering Theory and Optical Radar (Nauka Press, Novosibirsk, USSR, 1981), in Russian.

Samokhvalov, I. V.

S. A. Danichkin, I. V. Samokhvalov, “Influence of optical system parameters on lidar characteristics,” Sov. J. Opt. Technol. 46, 5–8 (1979).

V. M. Orlov, I. V. Samokhvalov, G. G. Matvienko, Elements of Light Scattering Theory and Optical Radar (Nauka Press, Novosibirsk, USSR, 1981), in Russian.

V. E. Zuev, B. V. Kaul, I. V. Samokhvalov, Laser Sensing of Industrial Aerosol (Nauka Press, Novosibirsk, USSR, 1986), in Russian.

Tikhomirov, A. A.

A. A. Tikhomirov, “Analysis of methods and technical means of dynamic range compression,” Atmos. Oceanic Opt. 13, 208–219 (2000).

Zuev, V. E.

V. E. Zuev, B. V. Kaul, I. V. Samokhvalov, Laser Sensing of Industrial Aerosol (Nauka Press, Novosibirsk, USSR, 1986), in Russian.

Atmos. Oceanic Opt. (1)

A. A. Tikhomirov, “Analysis of methods and technical means of dynamic range compression,” Atmos. Oceanic Opt. 13, 208–219 (2000).

Sov. J. Opt. Technol. (1)

S. A. Danichkin, I. V. Samokhvalov, “Influence of optical system parameters on lidar characteristics,” Sov. J. Opt. Technol. 46, 5–8 (1979).

Other (6)

V. M. Orlov, I. V. Samokhvalov, G. G. Matvienko, Elements of Light Scattering Theory and Optical Radar (Nauka Press, Novosibirsk, USSR, 1981), in Russian.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (WileyNew York, 1984).

E. D. Hinkley, ed., Laser Monitoring of Atmosphere Vol. 14 of Topics in Applied Physics, (Springler-Verlag, Berlin, 1978).

R. R. Agishev, Protection from Background Clutter in Electro-Optical Systems of Atmosphere Monitoring (Mashinostroenie Press, Moscow, 1994), in Russian.

V. E. Lystsev, V. G. Monastyrsky, “Some problems of scattering media photometry,” in Instruments and Methods of Remote Measurements of Atmospheric Optical Parameters (Gidrometeoizdat Press, Leningrad, USSR, 1980), pp. 79–87, in Russian.

V. E. Zuev, B. V. Kaul, I. V. Samokhvalov, Laser Sensing of Industrial Aerosol (Nauka Press, Novosibirsk, USSR, 1986), in Russian.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical scheme to explain the shift of the scattering-volume image in monostatic biaxial lidar. 1, beam output aperture; 2, probing beam; 3, optical axis of transmitter; 4, optical axis of receiving system; 5, receiving lens; 6, optical axis of monitoring trace image.

Fig. 2
Fig. 2

Relations between the cross section of signals from ranges R min, R, and R max and the background radiation cross section in the sounded-path image locus for different field-of-view diaphragms.

Fig. 3
Fig. 3

(a) Spatial-angular efficiency versus normalized distance R/ R min function for optical systems with round (J 1), wedgelike (J 2), and compensating (J 3) diaphragms at R min = 0.2 km; (b) Spatial-angular efficiency as minimal sounding range R min [m] function for optical systems with round, wedgelike and compensating diaphragms at RR min. Curves are computed for θ0 = 1 mrad, f = 1 m, L = 0.5 m.

Fig. 4
Fig. 4

Illustration of the R-layer image defocusing in the R min-layer image plane.

Fig. 5
Fig. 5

Vignetting parameter V Rmin as a function of R/ R min for different values of the system parameter h.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

J=Ωs/Ω0,
zR=f2/R-f; xR=Lf/R-f,
WR=d0+θ0Rf/R-f.
ΩsR=SR/zR+f2,
WRmin=d0/Rmin+θ0f.
dD1=xRmin-xRmax+WRmin+WRmax/2,
dD1=d0/2+L/Rmin+θ0f.
J1=d0/R+Θ02d0/2+LRmin+Θ02.
Lf/Rmax-f, f2/Rmax-f
Lf/Rmin-f, f2/Rmin-f,
SD2p=WRmin+WRmax2x2-x1+π W2Rmin+W2Rmax8.
SD2p=f22d0Rmin+2θ0LRmin+π2d0Rmin+θ0θ0.
J2=SiSD2p=π21+d0Rθ022+d0Rminθ0LRminθ0+π21+d0Rminθ0.
J3=SiKv/SD3,
Sx=1-xR/aWRWRmin, SD3=WRmina/2+πWRmin/8,
J3=81-xR/aΘ0πΘ0+4a.
ΘoptRR=Θ0R+d0,
ΘcomΘ0+2ϕ+2L/Rmin,
Rmincom=2L/Θcom-Θ0.
U=Pbcom/Pbopt=Θcom/Θopt2=Θ0+2L/Rmin/Θ0+d0/R2.
Umin=1+2L/RminΘ02=1+g2,
QspotRmin=DzRmin-zR/f+zRfDR-Rmin/R Rmin,
VRminR=QspotR minR/WRminR2.
VRminRh21-Rmin/R2.

Metrics