Abstract

Experimental validation of a distortion removal technique for multi-chip free-space optical shuffle interconnections is presented. The free-space fabric links dense two-dimensional arrays of vertical cavity surface emitting laser(s) (VCSEL)(s) and detectors and must achieve full field registration on the order of 10 microns across the entire array. The new hybrid micro-macro optical concept realizes the required high-registration accuracy by simultaneously eliminating distortion in each of the interleaved off-axis imaging systems that comprise the complete fabric. This is achieved by exploiting the typically low numerical aperture of VCSELs. Individually tailored beam-deflecting micro-optical elements were used to create symmetry about a central aperture for VCSEL beams in the optical system. Experiments were developed to quantify the registration accuracy, the VCSEL images, and the associated spot sizes. The experimental results show that beam steering can be implemented to remove distortion in off-axis free-space optical-interconnection systems.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, “What classical optics can do for the digital optical computer,” Appl. Opt. 25, 1543–1549 (1986).
    [CrossRef] [PubMed]
  2. G. Eichmann, Y. Li, “Compact optical generalized perfect shuffle,” Appl. Opt. 26, 1167–1169 (1987).
    [CrossRef]
  3. S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D Optical Multistage Interconnection Networks,” In Digital Optical Computing, R. Arratiloon, Ed., Proc. SPIE752, 209–216 (1987).
  4. K.-H. Brenner, A. Huang, “Optical implementations of the perfect shuffle Interconnection,” Appl. Opt. 27, 135–137 (1988).
    [CrossRef] [PubMed]
  5. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988).
    [CrossRef] [PubMed]
  6. A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” In Optical Computing 88, P. H. Chavel, J. W. Goodman, G. Roblin, Eds., Proc. SPIE963, 270–282 (1988).
  7. M. W. Haney, J. J. Levy, “Optically efficient free-space folded perfect shuffle network,” Appl. Opt. 30, 2833–2840 (1991).
    [CrossRef] [PubMed]
  8. G. C. Marsden, P. J. Marchand, P. Harvey, S. C. Esener, “Optical transpose interconnection system architecture,” Opt. Lett. 18, 1083–1085 (1993).
    [CrossRef]
  9. M. W. Haney, “Pipelined optoelectronic free-space permutation network,” Opt. Lett. 17, 283–285 (1992).
    [CrossRef]
  10. M. W. Haney, M. P. Christensen, “Performance scaling comparison for free-space optical and electrical interconnection approaches,” Appl. Opt. 37, 2886–2894 (1998).
    [CrossRef]
  11. M. W. Haney, M. P. Christensen, “Optical free-space sliding tandem Banyan architecture for self-routing switching networks,” in Digest of the International Conference on Optical Computing (Heriot-Watt Univ., Edinburgh, UK, 1994), pp. 249–250.
  12. R. R. Michael, M. P. Christensen, Michael W. Haney, “Experimental evaluation of the 3-D optical shuffle module of the sliding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
    [CrossRef]
  13. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).
  14. T. Smith, “The changes is aberrations when the object and stop are moved,: Trans. Opt. Soc. 23, 139–153 (1921/1922).
  15. G. C. Steward, The Symmetrical Optical System (Cambridge University, Cambridge, UK, 1928).
  16. R. Kingslake, Lens Design Fundamentals (Academic, San Diego, Calif., 1978).
  17. M. P. Christensen, P. Milojkovic, M. W. Haney, “Analysis of beam steering as a method for distortion removal in free-space optical interconnections,” Opt. Soc. Am. A, 19, (2002).
    [CrossRef]

2002 (1)

M. P. Christensen, P. Milojkovic, M. W. Haney, “Analysis of beam steering as a method for distortion removal in free-space optical interconnections,” Opt. Soc. Am. A, 19, (2002).
[CrossRef]

1998 (1)

1996 (1)

R. R. Michael, M. P. Christensen, Michael W. Haney, “Experimental evaluation of the 3-D optical shuffle module of the sliding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

1993 (1)

1992 (1)

M. W. Haney, “Pipelined optoelectronic free-space permutation network,” Opt. Lett. 17, 283–285 (1992).
[CrossRef]

1991 (1)

1988 (2)

1987 (1)

1986 (1)

Athale, R. A.

Bounnak, S.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Brenner, K.-H.

Chandramani, P.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Christensen, M. P.

M. P. Christensen, P. Milojkovic, M. W. Haney, “Analysis of beam steering as a method for distortion removal in free-space optical interconnections,” Opt. Soc. Am. A, 19, (2002).
[CrossRef]

M. W. Haney, M. P. Christensen, “Performance scaling comparison for free-space optical and electrical interconnection approaches,” Appl. Opt. 37, 2886–2894 (1998).
[CrossRef]

R. R. Michael, M. P. Christensen, Michael W. Haney, “Experimental evaluation of the 3-D optical shuffle module of the sliding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

M. W. Haney, M. P. Christensen, “Optical free-space sliding tandem Banyan architecture for self-routing switching networks,” in Digest of the International Conference on Optical Computing (Heriot-Watt Univ., Edinburgh, UK, 1994), pp. 249–250.

Eichmann, G.

Ekman, J.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Esener, S. C.

Glaser, I.

A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” In Optical Computing 88, P. H. Chavel, J. W. Goodman, G. Roblin, Eds., Proc. SPIE963, 270–282 (1988).

Haney, M. W.

M. P. Christensen, P. Milojkovic, M. W. Haney, “Analysis of beam steering as a method for distortion removal in free-space optical interconnections,” Opt. Soc. Am. A, 19, (2002).
[CrossRef]

M. W. Haney, M. P. Christensen, “Performance scaling comparison for free-space optical and electrical interconnection approaches,” Appl. Opt. 37, 2886–2894 (1998).
[CrossRef]

M. W. Haney, “Pipelined optoelectronic free-space permutation network,” Opt. Lett. 17, 283–285 (1992).
[CrossRef]

M. W. Haney, J. J. Levy, “Optically efficient free-space folded perfect shuffle network,” Appl. Opt. 30, 2833–2840 (1991).
[CrossRef] [PubMed]

C. W. Stirk, R. A. Athale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988).
[CrossRef] [PubMed]

M. W. Haney, M. P. Christensen, “Optical free-space sliding tandem Banyan architecture for self-routing switching networks,” in Digest of the International Conference on Optical Computing (Heriot-Watt Univ., Edinburgh, UK, 1994), pp. 249–250.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Haney, Michael W.

R. R. Michael, M. P. Christensen, Michael W. Haney, “Experimental evaluation of the 3-D optical shuffle module of the sliding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

Harvey, P.

Hibbs-Brenner, M.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Huang, A.

Kalweit, E.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Kiamilev, F.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Kingslake, R.

R. Kingslake, Lens Design Fundamentals (Academic, San Diego, Calif., 1978).

Krile, T. F.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D Optical Multistage Interconnection Networks,” In Digital Optical Computing, R. Arratiloon, Ed., Proc. SPIE752, 209–216 (1987).

Levy, J. J.

Li, Y.

Lin, S.-H.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D Optical Multistage Interconnection Networks,” In Digital Optical Computing, R. Arratiloon, Ed., Proc. SPIE752, 209–216 (1987).

Liu, Y.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Lohmann, A. W.

Marchand, P. J.

Marsden, G. C.

Marta, T.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Michael, R. R.

R. R. Michael, M. P. Christensen, Michael W. Haney, “Experimental evaluation of the 3-D optical shuffle module of the sliding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

Milojkovic, P.

M. P. Christensen, P. Milojkovic, M. W. Haney, “Analysis of beam steering as a method for distortion removal in free-space optical interconnections,” Opt. Soc. Am. A, 19, (2002).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Nohava, J.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Rozier, R.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Sawchuk, A. A.

A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” In Optical Computing 88, P. H. Chavel, J. W. Goodman, G. Roblin, Eds., Proc. SPIE963, 270–282 (1988).

Smith, T.

T. Smith, “The changes is aberrations when the object and stop are moved,: Trans. Opt. Soc. 23, 139–153 (1921/1922).

Steward, G. C.

G. C. Steward, The Symmetrical Optical System (Cambridge University, Cambridge, UK, 1928).

Stirk, C. W.

Walkup, J. F.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D Optical Multistage Interconnection Networks,” In Digital Optical Computing, R. Arratiloon, Ed., Proc. SPIE752, 209–216 (1987).

Walterson, B.

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

Appl. Opt. (6)

J. Lightwave Technol. (1)

R. R. Michael, M. P. Christensen, Michael W. Haney, “Experimental evaluation of the 3-D optical shuffle module of the sliding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

Opt. Lett. (2)

Opt. Soc. Am. A (1)

M. P. Christensen, P. Milojkovic, M. W. Haney, “Analysis of beam steering as a method for distortion removal in free-space optical interconnections,” Opt. Soc. Am. A, 19, (2002).
[CrossRef]

Trans. Opt. Soc. (1)

T. Smith, “The changes is aberrations when the object and stop are moved,: Trans. Opt. Soc. 23, 139–153 (1921/1922).

Other (6)

G. C. Steward, The Symmetrical Optical System (Cambridge University, Cambridge, UK, 1928).

R. Kingslake, Lens Design Fundamentals (Academic, San Diego, Calif., 1978).

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net Optical Interconnection Prototype Demonstration Program,” In Optoelectronic Interconnects V, R. T. Chen, J. P. Bristow, eds., Proc. SPIE3288, 194–203 (1998).

M. W. Haney, M. P. Christensen, “Optical free-space sliding tandem Banyan architecture for self-routing switching networks,” in Digest of the International Conference on Optical Computing (Heriot-Watt Univ., Edinburgh, UK, 1994), pp. 249–250.

A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” In Optical Computing 88, P. H. Chavel, J. W. Goodman, G. Roblin, Eds., Proc. SPIE963, 270–282 (1988).

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D Optical Multistage Interconnection Networks,” In Digital Optical Computing, R. Arratiloon, Ed., Proc. SPIE752, 209–216 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic side view of the global optical shuffle interconnection.11,12 There is one lens over each chip. Each chip communicates with every chip in the receiving array. The system is “folded” along the dotted line using a mirror to facilitate packaging and alignment.

Fig. 2
Fig. 2

Depiction of VCSEL beams as they pass through the global multi-chip interconnection system. The VCSEL planes are on the left-hand side and the detector planes are on the right-hand side. (a) Telecentric interconnection system, (b) symmetric interconnect system with auxiliary microbeam deflection elements.

Fig. 3
Fig. 3

Schematic diagram of lens beam-steering validation experiment showing a symmetric ray-path for a steered VCSEL beam.

Fig. 4
Fig. 4

Distortion plot of ±1 mm field for the candidate interconnection setup without beam steering. The x indicates the actual location of the VCSEL image, the line connects the ideal and actual image position.

Fig. 5
Fig. 5

Distortion plot of ±1 mm field for the candidate interconnection setup with beam steering.

Fig. 6
Fig. 6

Contrast-enhanced photograph of prototype diffractive beam-steering array (courtesy of D. Prather/J. Mait). Each grating element is 250 µm on a side.

Fig. 7
Fig. 7

Schematic diagram of experimental setup for beam-steering validation experiment.

Fig. 8
Fig. 8

Example beam-steering correction with diffractive array: (a) without beam steering, (b) with beam steering.

Fig. 9
Fig. 9

Schematic diagram of experimental setup. The macro lenses tested in this setup were 25 mm f/1.2 doublets.

Fig. 10
Fig. 10

Images of fiducial marks (top,) separated by 100 µm, and composite images of translated (in 100 µm steps) VCSELs (a) unsteered VCSEL images, (b) steered VCSEL images.

Fig. 11
Fig. 11

On-axis cluster registration error results.

Fig. 12
Fig. 12

Spot-width as a function of position.

Fig. 13
Fig. 13

(a) Unsteered VCSEL images, (b) steered VCSEL images.

Fig. 14
Fig. 14

Off-axis cluster registration error results. The center VCSEL image positions correspond to off-axis source VCSEL distance of 3.75 mm. As expected, the differences in registration error is smallest for the VCSEL positions that are steered at the smallest angles (near 4.75 mm).

Tables (1)

Tables Icon

Table 1 Magnitude of Steering Angles[Deg]a

Metrics