Abstract

We propose a class-associative correlation filter based technique for detecting a class of objects consisting of dissimilar patterns. The fringe-adjusted joint transform correlation algorithm is utilized to enhance the correlation performance, thus ensuring a strong and equal correlation peak for each element of the selected class. For enhanced performance, an enhanced version of the fringe-adjusted filter is incorporated in the class-associative multiple target detection process. The feasibility of the proposed technique has been tested by computer simulation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  2. F. T. S. Yu, J. E. Ludman, “Microcomputer based programmable joint transform correlator for automatic pattern recognition and identification,” Opt. Lett. 11, 395–397 (1986).
    [CrossRef] [PubMed]
  3. B. Javidi, C. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1998).
    [CrossRef]
  4. D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
    [CrossRef]
  5. M. S. Alam, M. A. Karim, “Fringe-adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993).
    [CrossRef] [PubMed]
  6. M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
    [CrossRef]
  7. A. K. Cherri, M. S. Alam, “Reference phase-encoded fringe-adjusted joint transform correlation,” Appl. Opt. 40, 1216–1225 (2001).
    [CrossRef]
  8. O. Perez, M. A. Karim, “An efficient implementation of joint Fourier transform correlation using a modified LCTV,” Microwave Opt. Technol. Lett. 2, 193–196 (1998).
    [CrossRef]
  9. J. Knopp, R. D. Juday, “Optical joint transform correlation on the DMD,” in Optical Pattern Recognition, H.-K. Liu, ed., Proc. SPIE1053, 208–215 (1989).
  10. W. B. Hahn, D. L. Flannery, “Design elements of a binary joint transform correlator and selected optimization technique,” Opt. Eng. 31, 896–905 (1992).
    [CrossRef]
  11. Q. Tang, B. Javidi, “Multiple-object detection with a chirp-encoded joint transform correlator,” Appl. Opt. 32, 4344–4350 (1993).
    [CrossRef]
  12. F. Cheng, P. Andres, F. T. S. Yu, D. Gregory, “Intensity compensation filter for joint transform correlation peak enhancement,” Appl. Opt. 32, 4357–4364 (1993).
    [CrossRef] [PubMed]
  13. M. S. Alam, C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlation,” Opt. Eng. 40, 2407–2413 (2001).
    [CrossRef]
  14. D. Casasent, B. Telfer, “Key and recollection vector effect on heteroassociative memory performance,” Appl. Opt. 28, 272–283 (1989).
    [CrossRef] [PubMed]
  15. J. Khoury, P. D. Gianino, Charles L. Woods, “Class-associative correlation filter using cross correlation enhancement,” in Optical Pattern Recognition XI, D. P. Casasent, T. H. Chao, eds., Proc. SPIE4043, 225–237 (2000).
  16. A. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
    [CrossRef]
  17. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
    [CrossRef] [PubMed]

2001 (2)

A. K. Cherri, M. S. Alam, “Reference phase-encoded fringe-adjusted joint transform correlation,” Appl. Opt. 40, 1216–1225 (2001).
[CrossRef]

M. S. Alam, C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlation,” Opt. Eng. 40, 2407–2413 (2001).
[CrossRef]

1998 (2)

O. Perez, M. A. Karim, “An efficient implementation of joint Fourier transform correlation using a modified LCTV,” Microwave Opt. Technol. Lett. 2, 193–196 (1998).
[CrossRef]

B. Javidi, C. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1998).
[CrossRef]

1994 (1)

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

1993 (3)

1992 (1)

W. B. Hahn, D. L. Flannery, “Design elements of a binary joint transform correlator and selected optimization technique,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

1991 (1)

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
[CrossRef]

1989 (1)

1986 (1)

1984 (1)

1966 (1)

1964 (1)

A. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

Alam, M. S.

M. S. Alam, C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlation,” Opt. Eng. 40, 2407–2413 (2001).
[CrossRef]

A. K. Cherri, M. S. Alam, “Reference phase-encoded fringe-adjusted joint transform correlation,” Appl. Opt. 40, 1216–1225 (2001).
[CrossRef]

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

M. S. Alam, M. A. Karim, “Fringe-adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993).
[CrossRef] [PubMed]

Andres, P.

Casasent, D.

Cheng, F.

Cherri, A. K.

Feng, D.

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
[CrossRef]

Flannery, D. L.

W. B. Hahn, D. L. Flannery, “Design elements of a binary joint transform correlator and selected optimization technique,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

Gianino, P. D.

J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
[CrossRef] [PubMed]

J. Khoury, P. D. Gianino, Charles L. Woods, “Class-associative correlation filter using cross correlation enhancement,” in Optical Pattern Recognition XI, D. P. Casasent, T. H. Chao, eds., Proc. SPIE4043, 225–237 (2000).

Goodman, J. W.

Gregory, D.

Hahn, W. B.

W. B. Hahn, D. L. Flannery, “Design elements of a binary joint transform correlator and selected optimization technique,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

Horner, J. L.

Javidi, B.

Juday, R. D.

J. Knopp, R. D. Juday, “Optical joint transform correlation on the DMD,” in Optical Pattern Recognition, H.-K. Liu, ed., Proc. SPIE1053, 208–215 (1989).

Karim, M. A.

O. Perez, M. A. Karim, “An efficient implementation of joint Fourier transform correlation using a modified LCTV,” Microwave Opt. Technol. Lett. 2, 193–196 (1998).
[CrossRef]

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

M. S. Alam, M. A. Karim, “Fringe-adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993).
[CrossRef] [PubMed]

Khoury, J.

J. Khoury, P. D. Gianino, Charles L. Woods, “Class-associative correlation filter using cross correlation enhancement,” in Optical Pattern Recognition XI, D. P. Casasent, T. H. Chao, eds., Proc. SPIE4043, 225–237 (2000).

Knopp, J.

J. Knopp, R. D. Juday, “Optical joint transform correlation on the DMD,” in Optical Pattern Recognition, H.-K. Liu, ed., Proc. SPIE1053, 208–215 (1989).

Kuo, C.

Ludman, J. E.

Perez, O.

O. Perez, M. A. Karim, “An efficient implementation of joint Fourier transform correlation using a modified LCTV,” Microwave Opt. Technol. Lett. 2, 193–196 (1998).
[CrossRef]

Tang, Q.

Telfer, B.

Vander Lugt, A.

A. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

Wai, C. N.

M. S. Alam, C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlation,” Opt. Eng. 40, 2407–2413 (2001).
[CrossRef]

Weaver, C. S.

Woods, Charles L.

J. Khoury, P. D. Gianino, Charles L. Woods, “Class-associative correlation filter using cross correlation enhancement,” in Optical Pattern Recognition XI, D. P. Casasent, T. H. Chao, eds., Proc. SPIE4043, 225–237 (2000).

Xia, S.

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
[CrossRef]

Yu, F. T. S.

Zhao, H.

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
[CrossRef]

Appl. Opt. (8)

IEEE Trans. Inf. Theory (1)

A. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

O. Perez, M. A. Karim, “An efficient implementation of joint Fourier transform correlation using a modified LCTV,” Microwave Opt. Technol. Lett. 2, 193–196 (1998).
[CrossRef]

Opt. Commun. (1)

D. Feng, H. Zhao, S. Xia, “Amplitude-modulated JTC for improving correlation discrimination,” Opt. Commun. 86, 260–264 (1991).
[CrossRef]

Opt. Eng. (3)

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

W. B. Hahn, D. L. Flannery, “Design elements of a binary joint transform correlator and selected optimization technique,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

M. S. Alam, C. N. Wai, “Color pattern recognition using fringe-adjusted joint transform correlation,” Opt. Eng. 40, 2407–2413 (2001).
[CrossRef]

Opt. Lett. (1)

Other (2)

J. Knopp, R. D. Juday, “Optical joint transform correlation on the DMD,” in Optical Pattern Recognition, H.-K. Liu, ed., Proc. SPIE1053, 208–215 (1989).

J. Khoury, P. D. Gianino, Charles L. Woods, “Class-associative correlation filter using cross correlation enhancement,” in Optical Pattern Recognition XI, D. P. Casasent, T. H. Chao, eds., Proc. SPIE4043, 225–237 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Reference image r(x, y), (b) input scene s(x, y) containing multiple identical objects.

Fig. 2
Fig. 2

Correlation output corresponding to the input joint image of Fig. 1.

Fig. 3
Fig. 3

Correlation output corresponding to the input joint image of Fig. 1 by use of the proposed algorithm with FAF.

Fig. 4
Fig. 4

(a) Reference image 1, (b) reference image 2, (c) unknown input scene.

Fig. 5
Fig. 5

Correlation output corresponding to the input joint image of Fig. 4.

Fig. 6
Fig. 6

Correlation output corresponding to the input joint image of Fig. 4 by use of the new algorithm with FAF.

Fig. 7
Fig. 7

Correlation output with Z and O as the reference images.

Fig. 8
Fig. 8

Correlation output by use of the new algorithm with FAF corresponding to the input joint image with O and Z as the reference (α = β = 0.5).

Fig. 9
Fig. 9

Correlation output by use of the new algorithm with FAF corresponding to the input joint image with O and Z as the reference (α = 0.6 and β = 0.4).

Tables (1)

Tables Icon

Table 1 Comparative Performance of Three Target-Detection Techniques

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

fx, y=rx, y+y0+sx, y-y0 =rx, y+y0+i=1n pix-xi, y-yi+nx, y-y0.
Fu, v=|Ru, v|expjϕru, v+jvy0+i=1n |Piu, v|expjϕpiu, v-juxi-jvyi+|Nu, v|×expjϕnu, v-jvy0
|Fu, v|2=|Ru, v|2+i=1n |Piu, v|2+|Nu, v|2+2 i=1nk=1kin |Piu, vPku, v|×cosϕpiu, v-ϕpku, v-uxi+uxk-vyi+vyk+2 i=1n |Piu, vRu, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+2|Ru, vNu, v|cosϕru, v-ϕnu, v+2vy0+2 i=1n |Piu, vNu, v|cosϕpiu, v-ϕnu, v-uxi-vyi.
f1x, y=rx, y+y0+sx, y-y0 =rx, y+y0+i=1n pix-xi, y-yi+nx, y-y0,f2x, y=rx, y+y0-sx, y-y0 =rx, y+y0-i=1n pix-xi, y-yi-nx, y-y0.
F1u, v=Fu, v,F2u, v=|Ru, v|expjϕru, v+jvy0-i=1n |Piu, v|expjϕpiu, v-juxi-jvyi-|Nu, v|×expjϕnu, v-jvy0,
T1u, v=|F1u, v|2=|Fu, v|2,T2u, v=|F2u, v|2 =|Ru, v|2+i=1n |Piu, v|2+|Nu, v|2-2|Ru, vNu, v|cosϕru, v-ϕnu, v+2vy0+2 i=1nk=1kin |Piu, vPku, v|cosϕpiu, v-ϕpku, v-uxi+uxk-vyi+vyk-2 i=1n |Piu, vRu, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+2 i=1n |Piu, vNu, v|cosϕpiu, v-ϕnu, v-uxi-vyi.
Tu, v=T1u, v-T2u, v, =4 i=1n |Piu, vRu, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+4|Ru, vNu, v|cosϕru, v-ϕnu, v+2vy0.
tx, y=4 i=1n pix-xi, y-yi  r*x, y+y0+4rx, y+y0  n*x, y-y0.
HFAFu, v=Bu, vAu, v+|Ru, v|2,
HFAFu, v1|Ru, v|2.
Gu, v=HFAFu, vTu, v =1|Ru, v|24 i=1n |Piu, vRu, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+4|Ru, vNu, v|cosϕru, v-ϕnu, v+2vy0,
f11x, y=r1x, y+y0+i=1n px-xi, y-yi+nx, y-y0, f21x, y=r1x, y+y0-i=1n px-xi, y-yi-nx, y-y0,
f12x, y=r2x, y+y0+i=1n px-xi, y-yi+nx, y-y0, f22x, y=r2x, y+y0-i=1n px-xi, y-yi-nx, y-y0.
T11=|F11|2 =|R1u, v|2+i=1n |Piu, v|2+|Nu, v|2+2 i=1nk=1kin |Piu, vPku, v|cosϕpiu, v-ϕpku, v-uxi+uxk-vyi+vyk+2 i=1n |Piu, vR1u, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+2 i=1n |Piu, vNu, v|cosϕpiu, v-ϕnu, v-uxi-vyi+2|R1u, vNu, v|cosϕru, v-ϕnu, v-uxi-vyi,T21=|F21|2 =|R1u, v|2+i=1n |Piu, v|2+|Nu, v|2+2 i=1nk=1kin |Piu, vPku, v|cosϕpiu, v-ϕpku, v-uxi+uxk-vyi+vyk-2 i=1n |Piu, vR1u, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+2 i=1n |Piu, vNu, v|cosϕpiu, v-ϕnu, v-uxi-vyi-2|R1u, vNu, v|cosϕru, v-ϕnu, v-uxi-vyi,
T12=|F12|2 =|R2u, v|2+i=1n |Piu, v|2+|Nu, v|2+2 i=1nk=1kin |Piu, vPku, v|cosϕpiu, v-ϕpku, v-uxi+uxk-vyi+vyk+2 i=1n |Piu, vR2u, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+2 i=1n |Piu, vNu, v|cosϕpiu, v-ϕnu, v-uxi-vyi+2|R2u, vNu, v|cosϕru, v-ϕnu, v-uxi-vyi, T22=|F22|2 =|R2u, v|2+i=1n |Piu, v|2+|Nu, v|2+2 i=1nk=1kin |Piu, vPku, v|cosϕpiu, v-ϕpku, v-uxi+uxk-vyi+vyk-2 i=1n |Piu, vR2u, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0+2 i=1n |Piu, vNu, v|cosϕpiu, v-ϕnu, v-uxi-vyi-2|R2u, vNu, v|cosϕru, v-ϕnu, v-uxi-vyi,
Tau, v=T11u, v-T21u, v, =4|R1u, vNu, v|cosϕru, v-ϕnu, v-uxi-vyi+4 i=1n |Piu, vR1u, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0,
Tbu, v=T12u, v-T22u, v, =4|R2u, vNu, v|cosϕru, v-ϕnu, v-uxi-vyi+4 i=1n |Piu, vR2u, v|cosϕpiu, v-ϕru, v-uxi-vyi-2vy0.
Tu, v=αTau, v+βTbu, v, =α4 i=1n |Piu, vR1u, v|cosϕpiu, v-ϕr1u, v-uxi-vyi-2vy0+4|R1u, vNu, v|cosϕr1u, v-ϕnu, v+2vy0+β4 i=1n |Piu, vR2u, v|cosϕpiu, v-ϕr2u, v-uxi-vyi-2vy0+4|R2u, vNu, v|cosϕr2u, v-ϕnu, v+2vy0,
HFAFu, v1Au, v+|R1u, v|2+|R2u, v|2,
Gu, v=HFAF×Tu, v=αTau, v+βTbu, vAu, v+|R1u, v|2+|R2u, v|2.

Metrics