Abstract

We describe what is to our knowledge a novel approach to phase unwrapping. Using the principle of unwrapping following areas with similar phase values (homogenous areas), the algorithm reacts satisfactorily to random noise and breaks in the wrap distributions. Execution times for a 512 × 512 pixel phase distribution are in the order of a half second on a desktop computer. The precise value depends upon the particular image under analysis. Two inherent parameters allow tuning of the algorithm to images of different quality and nature.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hariharan, “Applications of interferogram analysis,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson, G. T. Reid, eds., (Institute of Physics Publishing, Bristol and Philadelphia, 1993), pp. 262–284.
  2. C. Gorecki, “Interferogram analysis using a Fourier transform method for automatic 3D surface measurement,” Pure Appl. Opt. 1, 103–110 (1992).
    [CrossRef]
  3. D. Robinson, “Phase unwrapping methods,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson, G. T. Reid, eds., (Institute of Physics Publishing, Bristol and Philadelphia, 1993), pp. 194–229.
  4. D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).
  5. M. Arevallilo Herráez, D. R. Burton, D. B. Clegg, “Robust, simple, and fast algorithm for phase unwrapping,” Appl. Opt. 35, 5847–5852 (1996).
    [CrossRef]
  6. A. Baldi, “Two-dimensional phase unwrapping by quad-tree decomposition,” Appl. Opt. 40, 1187–1194 (2001).
    [CrossRef]
  7. R. W. Schafer, A. V. Oppenheim, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), pp. 507–511.
  8. H. A. Vrooman, A. M. Maas, “Image processing algorithms for the analysis of phase-shifted speckle interference patterns,” Appl. Opt. 30, 1636–1641 (1991).
    [CrossRef] [PubMed]
  9. J. A. Quiroga, E. Bernabeu, “Phase unwrapping algorithm for noisy phase-map processing,” Appl. Opt. 33, 6725–6731 (1994).
    [CrossRef] [PubMed]
  10. J. A. Quiroga, A. Gonzalez-Cano, E. Bernabeu, “Phase unwrapping algorithm based on adaptive criterion,” Appl. Opt. 34, 2560–2563 (1995).
    [CrossRef] [PubMed]
  11. J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3268–3270 (1989).
    [CrossRef] [PubMed]
  12. K. M. Hung, T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965–2970 (1998).
    [CrossRef]
  13. D. C. Ghiglia, L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).
    [CrossRef]
  14. P. Stephenson, D. R. Burton, M. J. Lalor, “Data validation techniques in a tiled phase unwrapping algorithm,” Opt. Eng. 33, 3703–3708 (1994).
    [CrossRef]
  15. J. J. Gierloff, “Phase unwrapping by regions,” in Current developments in optical engineering II, R. E. Fischer, W. J. Smith, eds., Proc. SPIE818, 2–9 (1987).
  16. P. G. Charette, I. W. Hunter, “Robust phase-unwrapping method for phase images with high noise content,” Appl. Opt. 35, 3506–3513 (1996).
    [CrossRef] [PubMed]

2001

1998

K. M. Hung, T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

1996

1995

1994

1992

C. Gorecki, “Interferogram analysis using a Fourier transform method for automatic 3D surface measurement,” Pure Appl. Opt. 1, 103–110 (1992).
[CrossRef]

1991

1989

Arevallilo Herráez, M.

Baldi, A.

Bernabeu, E.

Burton, D. R.

M. Arevallilo Herráez, D. R. Burton, D. B. Clegg, “Robust, simple, and fast algorithm for phase unwrapping,” Appl. Opt. 35, 5847–5852 (1996).
[CrossRef]

P. Stephenson, D. R. Burton, M. J. Lalor, “Data validation techniques in a tiled phase unwrapping algorithm,” Opt. Eng. 33, 3703–3708 (1994).
[CrossRef]

Charette, P. G.

Clegg, D. B.

Ghiglia, D. C.

Gierloff, J. J.

J. J. Gierloff, “Phase unwrapping by regions,” in Current developments in optical engineering II, R. E. Fischer, W. J. Smith, eds., Proc. SPIE818, 2–9 (1987).

Gonzalez-Cano, A.

Gorecki, C.

C. Gorecki, “Interferogram analysis using a Fourier transform method for automatic 3D surface measurement,” Pure Appl. Opt. 1, 103–110 (1992).
[CrossRef]

Hariharan, P.

P. Hariharan, “Applications of interferogram analysis,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson, G. T. Reid, eds., (Institute of Physics Publishing, Bristol and Philadelphia, 1993), pp. 262–284.

Hung, K. M.

K. M. Hung, T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

Hunter, I. W.

Huntley, J. M.

Lalor, M. J.

P. Stephenson, D. R. Burton, M. J. Lalor, “Data validation techniques in a tiled phase unwrapping algorithm,” Opt. Eng. 33, 3703–3708 (1994).
[CrossRef]

Maas, A. M.

Oppenheim, A. V.

R. W. Schafer, A. V. Oppenheim, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), pp. 507–511.

Pritt, M. D.

D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

Quiroga, J. A.

Robinson, D.

D. Robinson, “Phase unwrapping methods,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson, G. T. Reid, eds., (Institute of Physics Publishing, Bristol and Philadelphia, 1993), pp. 194–229.

Romero, L. A.

Schafer, R. W.

R. W. Schafer, A. V. Oppenheim, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), pp. 507–511.

Stephenson, P.

P. Stephenson, D. R. Burton, M. J. Lalor, “Data validation techniques in a tiled phase unwrapping algorithm,” Opt. Eng. 33, 3703–3708 (1994).
[CrossRef]

Vrooman, H. A.

Yamada, T.

K. M. Hung, T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Eng.

K. M. Hung, T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

P. Stephenson, D. R. Burton, M. J. Lalor, “Data validation techniques in a tiled phase unwrapping algorithm,” Opt. Eng. 33, 3703–3708 (1994).
[CrossRef]

Pure Appl. Opt.

C. Gorecki, “Interferogram analysis using a Fourier transform method for automatic 3D surface measurement,” Pure Appl. Opt. 1, 103–110 (1992).
[CrossRef]

Other

D. Robinson, “Phase unwrapping methods,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson, G. T. Reid, eds., (Institute of Physics Publishing, Bristol and Philadelphia, 1993), pp. 194–229.

D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

R. W. Schafer, A. V. Oppenheim, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), pp. 507–511.

J. J. Gierloff, “Phase unwrapping by regions,” in Current developments in optical engineering II, R. E. Fischer, W. J. Smith, eds., Proc. SPIE818, 2–9 (1987).

P. Hariharan, “Applications of interferogram analysis,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson, G. T. Reid, eds., (Institute of Physics Publishing, Bristol and Philadelphia, 1993), pp. 262–284.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Divisions established as an aid to phase unwrapping.

Fig. 2
Fig. 2

Joining process between the groups.

Fig. 3
Fig. 3

(a) Larger division size, in contrast to a smaller division size that results in a larger number of groups (b).

Fig. 4
Fig. 4

(a) Wrapped phase distribution, (b) unwrapped phase distribution, (c) isolated groups.

Fig. 5
Fig. 5

(a) Wrapped phase distribution, (b) unwrapped phase distribution, (c) isolated groups, (d) rewrapped phase distribution.

Fig. 6
Fig. 6

(a) Wrapped phase distribution, (b) horizontal unwrapping, (c) unwrapped phase distribution, (d) isolated groups.

Fig. 7
Fig. 7

(a) Wrapped phase distribution, (b) unwrapped phase distribution, (c) isolated groups.

Fig. 8
Fig. 8

(a) Wrapped phase distribution, (b) horizontal unwrapping, (c) unwrapped phase distribution, (d) isolated groups, (e) rewrapped phase map.

Fig. 9
Fig. 9

Proposed algorithm in action.

Fig. 10
Fig. 10

(a) Wrapped phase distribution, (b) unwrapped phase distribution, (c) isolated groups.

Metrics