Abstract

Our research has shown that the autocorrelation peaks of a binary joint transform correlator are affected by input scenes’ backgrounds. An adaptive method is proposed to overcome this problem. The image of interest is first extracted from the background based on the position of the highest correlation peak of the input and reference images. The extracted image is then correlated with the reference to obtain the final correlation peak. Numerical simulations showed that the final autocorrelation peak is the maximum constant for a specified reference image.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  2. B. Javidi, “Nonlinear joint power spectrum based on optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
    [CrossRef] [PubMed]
  3. B. Javidi, J. Wang, Q. Tang, “Multiple-object binary joint transform correlation using multiple-level threshold crossing,” Appl. Opt. 30, 4234–4244 (1991).
    [CrossRef] [PubMed]
  4. W. B. Hahn, D. L. Flannery, “Design elements of binary joint transform correlation and selected optimization techniques,” Opt. Eng. 31, 896–905 (1992).
    [CrossRef]
  5. M. S. Alam, “Fractional power fringe-adjusted joint transform correlation,” Opt. Eng. 34, 3208–3215 (1995).
    [CrossRef]
  6. H. J. Su, M. A. Karim, “Performance improvement of a phase-shifting joint transform correlator by use of phase-iterative techniques,” Appl. Opt. 37, 3639–3642 (1998).
    [CrossRef]
  7. L. P. Yaroslavsky, E. Marom, “Nonlinearity optimization in nonlinear joint transform correlators,” Appl. Opt. 36, 4816–4822 (1997).
    [CrossRef] [PubMed]
  8. B. Javidi, J. Li, A. H. Fazlollahi, J. Horner, “Binary nonlinear joint transform correlator performance with different thresholding methods under unknown illumination conditions,” Appl. Opt. 34, 886–896 (1995).
    [CrossRef] [PubMed]
  9. F. Lei, H. Huang, N. Yoshikawa, M. Iton, H. Yatagai, “Performance of binary joint transform correlator using linear combination threshold function,” Opt. Commun. 169, 207–221 (1999).
    [CrossRef]
  10. Please reference http://www.alacron.com/ for details.

1999

F. Lei, H. Huang, N. Yoshikawa, M. Iton, H. Yatagai, “Performance of binary joint transform correlator using linear combination threshold function,” Opt. Commun. 169, 207–221 (1999).
[CrossRef]

1998

1997

1995

1992

W. B. Hahn, D. L. Flannery, “Design elements of binary joint transform correlation and selected optimization techniques,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

1991

1989

1966

Alam, M. S.

M. S. Alam, “Fractional power fringe-adjusted joint transform correlation,” Opt. Eng. 34, 3208–3215 (1995).
[CrossRef]

Fazlollahi, A. H.

Flannery, D. L.

W. B. Hahn, D. L. Flannery, “Design elements of binary joint transform correlation and selected optimization techniques,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

Goodman, J. W.

Hahn, W. B.

W. B. Hahn, D. L. Flannery, “Design elements of binary joint transform correlation and selected optimization techniques,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

Horner, J.

Huang, H.

F. Lei, H. Huang, N. Yoshikawa, M. Iton, H. Yatagai, “Performance of binary joint transform correlator using linear combination threshold function,” Opt. Commun. 169, 207–221 (1999).
[CrossRef]

Iton, M.

F. Lei, H. Huang, N. Yoshikawa, M. Iton, H. Yatagai, “Performance of binary joint transform correlator using linear combination threshold function,” Opt. Commun. 169, 207–221 (1999).
[CrossRef]

Javidi, B.

Karim, M. A.

Lei, F.

F. Lei, H. Huang, N. Yoshikawa, M. Iton, H. Yatagai, “Performance of binary joint transform correlator using linear combination threshold function,” Opt. Commun. 169, 207–221 (1999).
[CrossRef]

Li, J.

Marom, E.

Su, H. J.

Tang, Q.

Wang, J.

Weaver, C. S.

Yaroslavsky, L. P.

Yatagai, H.

F. Lei, H. Huang, N. Yoshikawa, M. Iton, H. Yatagai, “Performance of binary joint transform correlator using linear combination threshold function,” Opt. Commun. 169, 207–221 (1999).
[CrossRef]

Yoshikawa, N.

F. Lei, H. Huang, N. Yoshikawa, M. Iton, H. Yatagai, “Performance of binary joint transform correlator using linear combination threshold function,” Opt. Commun. 169, 207–221 (1999).
[CrossRef]

Appl. Opt.

Opt. Commun.

F. Lei, H. Huang, N. Yoshikawa, M. Iton, H. Yatagai, “Performance of binary joint transform correlator using linear combination threshold function,” Opt. Commun. 169, 207–221 (1999).
[CrossRef]

Opt. Eng.

W. B. Hahn, D. L. Flannery, “Design elements of binary joint transform correlation and selected optimization techniques,” Opt. Eng. 31, 896–905 (1992).
[CrossRef]

M. S. Alam, “Fractional power fringe-adjusted joint transform correlation,” Opt. Eng. 34, 3208–3215 (1995).
[CrossRef]

Other

Please reference http://www.alacron.com/ for details.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Binary JPS with, (b) without background noise.

Fig. 2
Fig. 2

Autocorrelation peak values according to background noise amplitude. (a) Random background noises with uniform distribution and pixel values ranged from 0 to the noise amplitude, (b) normal background noises with mean 128 and variances ranged from 0 to 100.

Fig. 3
Fig. 3

Example of poor performance by a binary JTC. (a) Cross-correlation output for the characters E and F, (b) auto-correlation output for the characters E and E embedded in random background noise.

Fig. 4
Fig. 4

Illustration of an adaptive binary JTC. (a) Binary JTC output of noisy input with k 1 and k 2 set to 1.0, (b) binary JTC output of extracted input with k 1 and k 2 set to 1.2.

Fig. 5
Fig. 5

Optoelectronic implementation of a binary JTC.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

tx, y=rx-x0, y+sx+x0, y+nx+x0, y.
Eα, β=R2α, β+S2α, β+2Rα, βSα, βcos4πx0α+φSα, β-φRα, β+N2α, β+2Rα, βNα, β×cos4πx0α+φNα, β-φRα, β+2Nα, βSα, βcosφNα, β-φSα, β,
ERα, β=R2α, β.
EIα, β=S2α, β+N2α, β+2Sα, βNα, βcosφNα, β-φSα, β.
ETα, β=k1ERα, β+k2EIα, β.
gα, β=1if Dα, β00Otherwise,
Dα, β=Eα, β-ETα, β =1-k1R2α, β+1-k2S2α, β+1-k2N2α, β+21-k2×Sα, βNα, β×cosφNα, β-φSα, β+2Rα, βSα, βcos4πx0α+φSα, β-φRα, β+2Rα, βNα, βcos4πx0α+φNα, β-φRα, β.
Dα, β=1-k1R2α, β+1-k2R2α, β+2R2α, βcos4πx0α.
Dα, β=2-k1-k2R2α, β+2R2α, β×cos4πx0α+1-k2N2α, β+21-k2Rα, βNα, βcosφNα, β-φRα, β+2Rα, βNα, βcos4πx0α+φNα, β-φRα, β.

Metrics