Abstract

A new, to our knowledge, scheme of all-optical switching is put forward by use of an all-fiber Mach-Zehnder interferometer incorporating ytterbium-doped fiber Bragg gratings. The device utilizes the characteristics of the sharp change of group velocity in transmission with the detuning parameter, δ = 2π(1/λ - 1/λB). The switching is achieved by changing the Bragg wavelength of the ytterbium-doped arm of the interferometer. A very small shift of the Bragg wavelength can lead to a π phase shift between the two arms, so the power needed to realize complete switching is much lower than that of other schemes. In addition, the device can compensate the dispersion of an optical pulse through the positive group velocity dispersion in transmission provided by the gratings.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. de Sterke, N. G. R. Broderick, B. J. Eggleton, M. J. Steel, “Nonlinear optics in fiber gratings,” Opt. Fiber Technol. Mater. Devices Syst. 2, 253–268 (1996).
    [CrossRef]
  2. A. Melloni, M. Chinello, M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
    [CrossRef]
  3. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
    [CrossRef] [PubMed]
  4. P. L. Chu, B. Wu, “Optical switching in twin-core erbium-doped fibers,” Opt. Lett. 17, 255–257 (1992).
    [CrossRef] [PubMed]
  5. M. Janos, J. Arkwright, Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
    [CrossRef]
  6. B. J. Eggleton, G. Lenz, N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear fiber Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
    [CrossRef]
  7. P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
    [CrossRef]
  8. R. Kashyap, Fiber Bragg Gratings (Academic, New York, 1999).
  9. G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay line based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
    [CrossRef]
  10. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
    [CrossRef]
  11. R. Kashyap, G. D. Maxwell, B. J. Ainslie, “Laser-trimmed four-port bandpass filter fabricated in single-mode photosensitive Ge-doped planar waveguide,” IEEE Photon. Technol. Lett. 15, 191–194 (1993).
    [CrossRef]

2001

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay line based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

2000

B. J. Eggleton, G. Lenz, N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear fiber Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
[CrossRef]

A. Melloni, M. Chinello, M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

1997

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
[CrossRef] [PubMed]

M. Janos, J. Arkwright, Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
[CrossRef]

1996

C. M. de Sterke, N. G. R. Broderick, B. J. Eggleton, M. J. Steel, “Nonlinear optics in fiber gratings,” Opt. Fiber Technol. Mater. Devices Syst. 2, 253–268 (1996).
[CrossRef]

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

1993

R. Kashyap, G. D. Maxwell, B. J. Ainslie, “Laser-trimmed four-port bandpass filter fabricated in single-mode photosensitive Ge-doped planar waveguide,” IEEE Photon. Technol. Lett. 15, 191–194 (1993).
[CrossRef]

1992

Ainslie, B. J.

R. Kashyap, G. D. Maxwell, B. J. Ainslie, “Laser-trimmed four-port bandpass filter fabricated in single-mode photosensitive Ge-doped planar waveguide,” IEEE Photon. Technol. Lett. 15, 191–194 (1993).
[CrossRef]

Arkwright, J.

M. Janos, J. Arkwright, Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
[CrossRef]

Arkwright, J. W.

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

Atkins, G. R.

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

Broderick, N. G. R.

C. M. de Sterke, N. G. R. Broderick, B. J. Eggleton, M. J. Steel, “Nonlinear optics in fiber gratings,” Opt. Fiber Technol. Mater. Devices Syst. 2, 253–268 (1996).
[CrossRef]

Brodzeli, Z.

M. Janos, J. Arkwright, Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
[CrossRef]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Chinello, M.

A. Melloni, M. Chinello, M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

Chu, P. L.

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

P. L. Chu, B. Wu, “Optical switching in twin-core erbium-doped fibers,” Opt. Lett. 17, 255–257 (1992).
[CrossRef] [PubMed]

de Sterke, C. M.

C. M. de Sterke, N. G. R. Broderick, B. J. Eggleton, M. J. Steel, “Nonlinear optics in fiber gratings,” Opt. Fiber Technol. Mater. Devices Syst. 2, 253–268 (1996).
[CrossRef]

Dhosi, G.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay line based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

B. J. Eggleton, G. Lenz, N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear fiber Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
[CrossRef]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
[CrossRef] [PubMed]

C. M. de Sterke, N. G. R. Broderick, B. J. Eggleton, M. J. Steel, “Nonlinear optics in fiber gratings,” Opt. Fiber Technol. Mater. Devices Syst. 2, 253–268 (1996).
[CrossRef]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Elango, P.

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

Janos, M.

M. Janos, J. Arkwright, Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
[CrossRef]

Judkins, J. B.

Kashyap, R.

R. Kashyap, G. D. Maxwell, B. J. Ainslie, “Laser-trimmed four-port bandpass filter fabricated in single-mode photosensitive Ge-doped planar waveguide,” IEEE Photon. Technol. Lett. 15, 191–194 (1993).
[CrossRef]

R. Kashyap, Fiber Bragg Gratings (Academic, New York, 1999).

Krug, P. A.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay line based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

B. J. Eggleton, G. Lenz, N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear fiber Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
[CrossRef]

Litchinitser, N. M.

B. J. Eggleton, G. Lenz, N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear fiber Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
[CrossRef]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay line based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Martinelli, M.

A. Melloni, M. Chinello, M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

Maxwell, G. D.

R. Kashyap, G. D. Maxwell, B. J. Ainslie, “Laser-trimmed four-port bandpass filter fabricated in single-mode photosensitive Ge-doped planar waveguide,” IEEE Photon. Technol. Lett. 15, 191–194 (1993).
[CrossRef]

Melloni, A.

A. Melloni, M. Chinello, M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

Ouellette, F.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay line based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
[CrossRef] [PubMed]

Stark, J. B.

Steel, M. J.

C. M. de Sterke, N. G. R. Broderick, B. J. Eggleton, M. J. Steel, “Nonlinear optics in fiber gratings,” Opt. Fiber Technol. Mater. Devices Syst. 2, 253–268 (1996).
[CrossRef]

Stephens, T.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Vengsarkar, A. M.

Wu, B.

Electron. Lett.

M. Janos, J. Arkwright, Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
[CrossRef]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Fiber Integr. Opt.

B. J. Eggleton, G. Lenz, N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear fiber Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
[CrossRef]

IEEE J. Quantum Electron.

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay line based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Melloni, M. Chinello, M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

R. Kashyap, G. D. Maxwell, B. J. Ainslie, “Laser-trimmed four-port bandpass filter fabricated in single-mode photosensitive Ge-doped planar waveguide,” IEEE Photon. Technol. Lett. 15, 191–194 (1993).
[CrossRef]

Opt. Fiber Technol. Mater. Devices Syst.

C. M. de Sterke, N. G. R. Broderick, B. J. Eggleton, M. J. Steel, “Nonlinear optics in fiber gratings,” Opt. Fiber Technol. Mater. Devices Syst. 2, 253–268 (1996).
[CrossRef]

Opt. Lett.

Other

R. Kashyap, Fiber Bragg Gratings (Academic, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic depiction of the principle.

Fig. 2
Fig. 2

Dispersion relation of a uniform Bragg grating: The vertical axis is the detuning parameter, and the horizontal axis is the propagation constant.

Fig. 3
Fig. 3

Group velocity and GVD of uniform FBG near the bandgap edge (λB = 1550 nm) (solid curve is group velocity, dotted curve is GVD).

Fig. 4
Fig. 4

Reflectivity spectrum of an apodized uniform FBG.

Fig. 5
Fig. 5

Group delay spectrum of an apodized FBG.

Fig. 6
Fig. 6

GVD spectrum of an apodized FBG.

Fig. 7
Fig. 7

Coupling ratios of different wavelengths.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

i E+z+i 1VE+t+κzE-=0,i E-z+i 1VE-t+κzE+=0.
κz=πΔnzηλB
δ=2πn¯1/λ-1/λB
δ=±κ2+β21/2,
βω=β0+β1ω-ω0+12 β2ω-ω02+16 β3ω-ω03+.
νg=1β1=V1-κ/δ21/2.
β2=-1V21δκδ21-κδ23/2.
νg=V1-κ/δ21/2=V1-πΔnηλB2πn¯λB-λλλB21/2=V1-12n¯λB-λλΔnη21/2=V1-141/2,
νg=V1-κ/δ21/2=V1-12n¯λB-λλΔnη+2n¯ΔλBλΔnη21/2=V1-1-2+2n¯ΔλBλΔnη21/2.
Lgνg-Lgνg=T2.

Metrics