Abstract

Although a full three-dimensional (3-D) reconstruction with both 3-D forward and inverse models provides the optimal solution for diffuse optical tomography (DOT), because of the 3-D nature of photon diffusion in tissue, it is computationally costly for both memory requirement and execution time in a conventional computing environment. Thus in practice there is motivation to develop an image reconstruction algorithm with dimensional reduction based on some modeling approximations. Here we have implemented a semi-3-D modified generalized pulse spectrum technique for time-resolved DOT, where a two-dimensional (2-D) distribution of optical properties is approximately assumed, while we retain 3-D distribution of photon migration in tissue. We have validated the proposed algorithm by reconstructing 3-D structural test objects from both numerically simulated and experimental data. We demonstrate our algorithm by comparing it with the calibrated 2-D reconstruction that is in widespread use as a shortcut to 3-D imaging and proving that the semi-3-D algorithm outperforms the calibrated 2-D algorithm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Österberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
    [CrossRef]
  2. S. B. Colak, D. G. Papaioannou, G. W. t’Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).
    [CrossRef] [PubMed]
  3. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
    [CrossRef]
  4. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  5. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
    [CrossRef] [PubMed]
  6. Y. Xu, N. V. Iftimia, H. Jiang, L. L. Key, M. B. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
    [CrossRef]
  8. F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
    [CrossRef]
  9. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
    [CrossRef]
  10. M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
    [CrossRef] [PubMed]
  11. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
    [CrossRef]
  12. J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).
    [CrossRef]
  13. F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002), http://search.ieice.org/2002/files/e110d.htm#e85-d,1,1 .
  14. M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
    [CrossRef]
  15. Y. M. Chen, “Generalized pulse spectrum technique,” Geophysics 50, 1664–1675 (1985).
    [CrossRef]
  16. D. Colton, P. Monk, “A comparison of two methods for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium,” J. Comput. Appl. Math. 42, 5–16 (1992).
    [CrossRef]
  17. Y. Pei, H. L. Graber, R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  18. Y. Pei, H. L. Graber, R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for dc optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
    [CrossRef]
  19. F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).
  20. F. Bevilacqua, D. Piguet, P. Marguet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: application to human brain,” Appl. Opt. 32, 574–579 (1993).
  21. S. R. Arridge, “Photon-measurement density functions. Part 1: Analytic forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  22. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  23. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
    [CrossRef]
  24. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).
  25. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef] [PubMed]
  26. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76–90 (2001).
    [CrossRef] [PubMed]
  27. M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging, J. Duncan, G. Gindi, eds., Vol. 1230 of Springer Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1997).
  28. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [CrossRef] [PubMed]
  29. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999).
    [CrossRef]
  30. F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
    [CrossRef] [PubMed]

2002

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002), http://search.ieice.org/2002/files/e110d.htm#e85-d,1,1 .

F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

2001

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76–90 (2001).
[CrossRef] [PubMed]

Y. Pei, H. L. Graber, R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Y. Pei, H. L. Graber, R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for dc optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
[CrossRef]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Y. Xu, N. V. Iftimia, H. Jiang, L. L. Key, M. B. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

2000

1999

J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Österberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

1998

1997

1995

1994

1993

1992

D. Colton, P. Monk, “A comparison of two methods for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium,” J. Comput. Appl. Math. 42, 5–16 (1992).
[CrossRef]

1985

Y. M. Chen, “Generalized pulse spectrum technique,” Geophysics 50, 1664–1675 (1985).
[CrossRef]

Abdoulaev, G.

Arridge, S. R.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

S. R. Arridge, “Photon-measurement density functions. Part 1: Analytic forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging, J. Duncan, G. Gindi, eds., Vol. 1230 of Springer Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1997).

Barbour, R. L.

Bevilacqua, F.

Bluestone, A. Y.

Boas, D. A.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76–90 (2001).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef] [PubMed]

Bolster, M. B.

Chance, B.

Chen, Y. M.

Y. M. Chen, “Generalized pulse spectrum technique,” Geophysics 50, 1664–1675 (1985).
[CrossRef]

Cheng, X.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76–90 (2001).
[CrossRef] [PubMed]

Colak, S. B.

Colton, D.

D. Colton, P. Monk, “A comparison of two methods for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium,” J. Comput. Appl. Math. 42, 5–16 (1992).
[CrossRef]

Cubeddu, R.

Dehghani, H.

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Delpy, D. T.

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Depeursinge, C.

Downar, T. J.

Eda, H.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Fry, M. E.

Gao, F.

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002), http://search.ieice.org/2002/files/e110d.htm#e85-d,1,1 .

F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).

Gaudette, T.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76–90 (2001).
[CrossRef] [PubMed]

Gerety, E. D.

Graber, H. L.

Gross, J. D.

Hebden, J. C.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

Hielscher, A. H.

Hillman, E. M. C.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

Iftimia, N. V.

Ito, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Jiang, H.

Kak, A. C.

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).

Key, L. L.

Kolzer, J.

Mandeville, J. B.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76–90 (2001).
[CrossRef] [PubMed]

Marguet, P.

Marota, J. J. A.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76–90 (2001).
[CrossRef] [PubMed]

McBride, T. O.

Melissen, J. B. M.

Millane, R. P.

Mitic, G.

Monk, P.

D. Colton, P. Monk, “A comparison of two methods for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium,” J. Comput. Appl. Math. 42, 5–16 (1992).
[CrossRef]

O’Leary, M. A.

Oda, I.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Oda, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Oikawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Onodera, Y.

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).

Österberg, U. L.

Otto, J.

Paasschens, J. C. J.

Papaioannou, D. G.

Paulsen, K. D.

Pei, Y.

Pifferi, A.

Piguet, D.

Plies, E.

Pogue, B. W.

Poplack, S. B.

Poulet, P.

Sassaroli, A.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Schmitz, C. H.

Schomberg, H.

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging, J. Duncan, G. Gindi, eds., Vol. 1230 of Springer Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1997).

Slaney, M.

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).

Solkner, G.

Strangman, G.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76–90 (2001).
[CrossRef] [PubMed]

t’Hooft, G. W.

Takada, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Tamura, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Tanikawa, Y.

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002), http://search.ieice.org/2002/files/e110d.htm#e85-d,1,1 .

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).

Taroni, P.

Torricelli, A.

Tromberg, B. J.

Tsuchiya, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Tsunazawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Valentini, G.

van Asten, N. A. A. J.

van der Mark, M. B.

Veenstra, H.

Wada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Webb, K. J.

Xu, Y.

Yamada, Y.

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002), http://search.ieice.org/2002/files/e110d.htm#e85-d,1,1 .

F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).

Yamashita, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Ye, J. C.

Yodh, A. G.

Zhao, H.

F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002), http://search.ieice.org/2002/files/e110d.htm#e85-d,1,1 .

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).

Zinth, W.

Appl. Opt.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Österberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

S. B. Colak, D. G. Papaioannou, G. W. t’Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).
[CrossRef] [PubMed]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

Y. Pei, H. L. Graber, R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for dc optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
[CrossRef]

F. Bevilacqua, D. Piguet, P. Marguet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: application to human brain,” Appl. Opt. 32, 574–579 (1993).

S. R. Arridge, “Photon-measurement density functions. Part 1: Analytic forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef] [PubMed]

Geophysics

Y. M. Chen, “Generalized pulse spectrum technique,” Geophysics 50, 1664–1675 (1985).
[CrossRef]

IEICE Trans. Inf. Syst.

F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002), http://search.ieice.org/2002/files/e110d.htm#e85-d,1,1 .

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
[CrossRef]

J. Comput. Appl. Math.

D. Colton, P. Monk, “A comparison of two methods for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium,” J. Comput. Appl. Math. 42, 5–16 (1992).
[CrossRef]

J. Opt. Soc. Am. A

NeuroImage

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76–90 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999).
[CrossRef]

Other

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging, J. Duncan, G. Gindi, eds., Vol. 1230 of Springer Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1997).

F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cylindrical object to demonstrate implementation of the semi-3-D algorithm.

Fig. 2
Fig. 2

Definitions of the numerical test objects: (a) contains three inclusions with different optical properties: A, 3μ aB and 3μ sB ′; B, 3μ aB and μ sB ′; C, μ aB and 3μ sB ′; (b) contains eight inclusions, four absorbing and four scattering; (c) has three targets as in (a) but they are located at different imaging planes.

Fig. 3
Fig. 3

Reconstructed images of the test-object in Fig. 1(a) by use of both calibrated 2-D and semi-3-D GPST algorithms.

Fig. 4
Fig. 4

Measurement errors as a function of iteration number with the iteration truncation marked.

Fig. 5
Fig. 5

Reconstructed images of the test object in Fig. 2(a) by use of both the calibrated 2-D and the semi-3-D GPST algorithms for varying target heights: (a) 3 mm, (b) 6 mm, (c) 12 mm, (d) 24 mm. For each subfigure the heights increase clockwise.

Fig. 6
Fig. 6

Reconstructed images of the test object in Fig. 2(b) by use of both the calibrated 2-D and the semi-3-D GPST algorithms with all the targets located at imaging planes of (a) z = 7.5 mm and (b) z = 1.5 mm.

Fig. 7
Fig. 7

Reconstructed images of the test object in Fig. 2(c) by use of the semi-3-D GPST algorithms for two imaging planes at z = 0 mm and z = 12 mm.

Fig. 8
Fig. 8

(a) Geometry and optical properties of the epoxy resin phantom in which the positions of the targets are represented by cylindrical coordinates of their centers, r c = (ρ, θ, z). (b) Reconstructed images at the working wavelength of λ = 799 nm by use of both the calibrated 2-D and the semi-3-D GPST algorithms.

Tables (4)

Tables Icon

Table 1 Definition of Test Object 1 Shown in Fig. 2(a)

Tables Icon

Table 2 Definition of Test Object 2 Shown in Fig. 2(b)

Tables Icon

Table 3 Definition of Test Object 3 Shown in Fig. 2(c)

Tables Icon

Table 4 Comparison of Relative Execution Time Per Iteration Among the Three Algorithms

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

Γ-Fμk=Jμkδμk, μk+1=μk+δμk,
μ= μar1,μarN, μsr1,μsrN, δμ=δμar1,, δμarN, δμsr1,, δμsrN,
Rξd, ζs=Γξd, ζs, p2/Γξd, ζs, p1,
JvRξd, ζs= Jvξd, ζs, p2Γξd, ζs, p1-Rξd, ζsJvξd, ζs, p1Γξd, ζs, p1,
Ja,nξd, ζs, p=-Ω Γξd, r, pΦr, ζs, pcunrdr Js,nξd, ζs, p=Ja,nξd, ζs, pμarn+p/c/μsrn, n=1, 2,, N
JˆR=JaRWa+JsRWs,
Wv=1/maxi|JvRi,1|0001/maxi|JvRi,2|000,1/maxi|JvRi,N|,
δR=JˆRδμ,
JˆRTJˆRδμ=JˆRTδR.
Γ-Fμk=Jμkδμxyk,μk+1=μk+δμxyk · Tz,
Ja,nξd, ζs, p=-Ωxy Kξd, ζs, rxy, pcunxyrxydrxy, Js,nξd, ζs, p=Ja,nξd, ζs, pμarnxy+p/c/μsrnxy, Kξd, ζs, rxy, p=Z Γξd, r, pΦr, ζs, pTzdz, n=1, 2,, Nxy
Z Γξd, r, pΦr, ζs, pδμa3-Drxydz=Z Γξd, r, pΦr, ζs, pTzdz]δμa3-DSrxy.
|δμa3-DSrxy||δμa3-Drxy|
|δμs3-DSrxy||δμs3-Drxy|
Γcalibξd, ζs, p=Γξd, ζs, pΓ2-Dξd, ζs, pΓ3-Dξd, ζs, p,
δΓξd, ζs, p=Ω Γξd, r, pr·δκrr-δμarcΦr, ζs, pdr,
δΓξd, ζs, p=-Ω Γξd, r, pΦr, ζs, pcδμardr-Ω Γξd, r, pr·κrrΦr, ζs, p× δμsrμsrκrrΦrζs, p·rδμsrμsrdr.
r·κrrΦr, ζs, p=μarc+pΦr, ζs, p
δΓξd, ζs, p=-Ω Γξd, r, pΦr, ζs, pCr, pdr,
Cr, p=cδμar+μarc+pμsr δμsr.
δRξd, ζs= δΓξd, ζs, p2Γξd, ζs, p1-Rξd, ζsδΓξd, ζs, p1Γξd, ζs, p1=-Ω Γξd, r, p2Φr, ζs, p2Cr, p2drΓξd, ζs, p1-Rξd, ζsΩ Γξd, r, p1Φr, ζs, p1Cr, p1drΓξd, ζs, p1.
δRξd, ζs=-Jξd, ζs, p2Cp2Γξd, ζs, p1-Rξd, ζsJξd, ζs, p1Cp1Γξd, ζs, p1,
Jnξd, ζs, p=Ω Γξd, r, pΦr, ζs, punrdr.

Metrics