Abstract

Spectroscopic ellipsometry is a noninvasive optical characterization technique mainly used in the semiconductor field to characterize bare substrates and thin films. In particular, it allows the gathering of information concerning the physical structure of the sample, such as roughness and film thickness, as well as its optical response. In the mid-infrared (IR) range each molecule exhibits a characteristic absorption fingerprint, which makes this technique chemically selective. Phase-modulated IR ellipsometry does not require a baseline correction procedure or suppression of atmospheric CO2 and water-vapor absorption bands, thus greatly reducing the subjectivity in data analysis. We have found that ellipsometric measurements of thin films, such as the solid residuals left on a plane surface after evaporation of a liquid drop containing a given compound in solution, are particularly favorable for dosing purposes because the intensity of IR absorptions shows a linear behavior along a wide range of solution concentrations of the given compound. Our aim is to illustrate with a concrete example and to justify theoretically the linearity experimentally found between radiation absorption and molecule concentration. For the example, we prepared aqueous solutions of glycogen, a molecule of huge biological importance currently tested in biochemical analyses, at concentrations ranging from 1 mg/l to 1 g/l, which correspond to those found in physiological conditions. The results of this example are promising for the application of ellipsometry for dosing purposes in biochemistry and biomedicine.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Drévillon, “Phase modulated ellipsometry from the ultraviolet to the infrared: in situ application to the growth of semiconductors,” Prog. Cryst. Growth Charact. 27, 1–87 (1993).
    [CrossRef]
  2. C. L. Putzing, M. A. Leugers, M. A. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, L. Yurga, “Infrared spectroscopy,” Anal. Chem. 66, 26R–66R (1994).
    [CrossRef]
  3. H. Kuzmany, B. Burger, “Vibrational spectroscopy of metallic-, semi-, and superconductors,” J. Mol. Struct. 347, 39–55 (1995).
    [CrossRef]
  4. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000).
  5. D. A. Long, Raman Spectroscopy (McGraw Hill, New York, 1977), pp. 146–216.
  6. M. Hesse, H. Meier, B. Zeeh, Spectroscopic Methods in Organic Chemistry (Thieme, Stuttgart, Germany, 1997), pp. 29–70.
  7. D. Pappas, B. W. Smith, J. D. Winefordner, “Raman spectroscopy in bioanalysis,” Talanta 51, 131–144 (2000).
    [CrossRef]
  8. E. Garcia-Caurel, L. Schwartz, B. Drévillon, “Application of Fourier-transform infrared ellipsometry to quantify biological molecules in animal tissues,” in Biomedical Vibrational Spectroscopy II, A. Mahadevan-Hansen, H. H. Mantsch, G. J. Puppels, eds., Proc. SPIE4614, 134–144 (2002).
  9. M. S. Zierer, R. P. Vieira, B. Mulloy, P. A. S. Mourao, “A novel acidic glycogen extracted from the marine sponge Aplysina fulva (Porifera-Demospongiae),” Carbohydrate Res. 274, 233–244 (1995).
    [CrossRef]
  10. K. Yano, S. Ohoshima, Y. Shimizu, T. Moriguchi, H. Katayama, “Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method,” Cancer Lett. 110, 29–34 (1996).
    [CrossRef] [PubMed]
  11. M. J. Dignam, B. Rao, M. Moskovits, R. W. Stobie, “Ellipsometric determination of the spectra of adsorbed molecules,” Can. J. Chem. 49, 1115–1130 (1971).
    [CrossRef]
  12. A. Canillas, E. Pascual, B. Drévillon, “Phase-modulated ellipsometer using a Fourier transform infrared spectrometer for real time applications,” Rev. Sci. Instrum. 64, 2153–2158 (1993).
    [CrossRef]
  13. E. Garcia-Caurel, E. Bertran, A. Canillas, “Optimized calibration method for Fourier transform infrared phase-modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
    [CrossRef]
  14. M. A. Cohenford, B. Rigas, “Cytologically normal cells from neoplastic cervical samples display extensive structural abnormalities on IR spectroscopy: implications for tumor biology,” Biophysics 95, 15327–15332 (1998).
  15. W. Zeroual, M. Manfait, C. Choisi, “FT-IR spectroscopy study of perturbations induced by anti-biotic on bacteria,” Pathologie Biologie 43, 300–305 (1995).
  16. R. N. A. H. Lewis, R. N. McElHaney, “Fourier transform infrared spectroscopy in the study of hydrated lipids and lipid bilayer membranes,” in Infrared Spectroscopy of Biomolecules, H. H. Mantsch, D. Chapman, eds. (Wiley, New York, 1996), pp. 159–202.
  17. T. Heitz, B. Drévillon, C. Godet, J. E. Bourée, “Quantitative study of C—H bonding in polymerlike amorphous carbon films using in-situ infrared ellipsometry,” Phys. Rev. B 58, 13957–13961 (1998).
    [CrossRef]
  18. E. D. Palik, ed., Handbook of Optical Constants I (Academic, Orlando, Fla., 1985).
  19. E. D. Palik, ed., Handbook of Optical Constants II (Academic, Boston, 1997).
  20. R. M. A. Azzam, N. M. Bashara, “Reflection and transmission of polarized light by stratified planar structures,” in Ellipsometry and Polarized Light, R. M. A. Azzam, N. M. Bashara (North-Holland, Amsterdam, 1989)pp. 269–363.

2000

D. Pappas, B. W. Smith, J. D. Winefordner, “Raman spectroscopy in bioanalysis,” Talanta 51, 131–144 (2000).
[CrossRef]

1999

E. Garcia-Caurel, E. Bertran, A. Canillas, “Optimized calibration method for Fourier transform infrared phase-modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
[CrossRef]

1998

M. A. Cohenford, B. Rigas, “Cytologically normal cells from neoplastic cervical samples display extensive structural abnormalities on IR spectroscopy: implications for tumor biology,” Biophysics 95, 15327–15332 (1998).

T. Heitz, B. Drévillon, C. Godet, J. E. Bourée, “Quantitative study of C—H bonding in polymerlike amorphous carbon films using in-situ infrared ellipsometry,” Phys. Rev. B 58, 13957–13961 (1998).
[CrossRef]

1996

K. Yano, S. Ohoshima, Y. Shimizu, T. Moriguchi, H. Katayama, “Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method,” Cancer Lett. 110, 29–34 (1996).
[CrossRef] [PubMed]

1995

H. Kuzmany, B. Burger, “Vibrational spectroscopy of metallic-, semi-, and superconductors,” J. Mol. Struct. 347, 39–55 (1995).
[CrossRef]

M. S. Zierer, R. P. Vieira, B. Mulloy, P. A. S. Mourao, “A novel acidic glycogen extracted from the marine sponge Aplysina fulva (Porifera-Demospongiae),” Carbohydrate Res. 274, 233–244 (1995).
[CrossRef]

W. Zeroual, M. Manfait, C. Choisi, “FT-IR spectroscopy study of perturbations induced by anti-biotic on bacteria,” Pathologie Biologie 43, 300–305 (1995).

1994

C. L. Putzing, M. A. Leugers, M. A. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, L. Yurga, “Infrared spectroscopy,” Anal. Chem. 66, 26R–66R (1994).
[CrossRef]

1993

B. Drévillon, “Phase modulated ellipsometry from the ultraviolet to the infrared: in situ application to the growth of semiconductors,” Prog. Cryst. Growth Charact. 27, 1–87 (1993).
[CrossRef]

A. Canillas, E. Pascual, B. Drévillon, “Phase-modulated ellipsometer using a Fourier transform infrared spectrometer for real time applications,” Rev. Sci. Instrum. 64, 2153–2158 (1993).
[CrossRef]

1971

M. J. Dignam, B. Rao, M. Moskovits, R. W. Stobie, “Ellipsometric determination of the spectra of adsorbed molecules,” Can. J. Chem. 49, 1115–1130 (1971).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, “Reflection and transmission of polarized light by stratified planar structures,” in Ellipsometry and Polarized Light, R. M. A. Azzam, N. M. Bashara (North-Holland, Amsterdam, 1989)pp. 269–363.

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, “Reflection and transmission of polarized light by stratified planar structures,” in Ellipsometry and Polarized Light, R. M. A. Azzam, N. M. Bashara (North-Holland, Amsterdam, 1989)pp. 269–363.

Bertran, E.

E. Garcia-Caurel, E. Bertran, A. Canillas, “Optimized calibration method for Fourier transform infrared phase-modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
[CrossRef]

Bourée, J. E.

T. Heitz, B. Drévillon, C. Godet, J. E. Bourée, “Quantitative study of C—H bonding in polymerlike amorphous carbon films using in-situ infrared ellipsometry,” Phys. Rev. B 58, 13957–13961 (1998).
[CrossRef]

Burger, B.

H. Kuzmany, B. Burger, “Vibrational spectroscopy of metallic-, semi-, and superconductors,” J. Mol. Struct. 347, 39–55 (1995).
[CrossRef]

Canillas, A.

E. Garcia-Caurel, E. Bertran, A. Canillas, “Optimized calibration method for Fourier transform infrared phase-modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
[CrossRef]

A. Canillas, E. Pascual, B. Drévillon, “Phase-modulated ellipsometer using a Fourier transform infrared spectrometer for real time applications,” Rev. Sci. Instrum. 64, 2153–2158 (1993).
[CrossRef]

Choisi, C.

W. Zeroual, M. Manfait, C. Choisi, “FT-IR spectroscopy study of perturbations induced by anti-biotic on bacteria,” Pathologie Biologie 43, 300–305 (1995).

Cohenford, M. A.

M. A. Cohenford, B. Rigas, “Cytologically normal cells from neoplastic cervical samples display extensive structural abnormalities on IR spectroscopy: implications for tumor biology,” Biophysics 95, 15327–15332 (1998).

Dignam, M. J.

M. J. Dignam, B. Rao, M. Moskovits, R. W. Stobie, “Ellipsometric determination of the spectra of adsorbed molecules,” Can. J. Chem. 49, 1115–1130 (1971).
[CrossRef]

Drévillon, B.

T. Heitz, B. Drévillon, C. Godet, J. E. Bourée, “Quantitative study of C—H bonding in polymerlike amorphous carbon films using in-situ infrared ellipsometry,” Phys. Rev. B 58, 13957–13961 (1998).
[CrossRef]

A. Canillas, E. Pascual, B. Drévillon, “Phase-modulated ellipsometer using a Fourier transform infrared spectrometer for real time applications,” Rev. Sci. Instrum. 64, 2153–2158 (1993).
[CrossRef]

B. Drévillon, “Phase modulated ellipsometry from the ultraviolet to the infrared: in situ application to the growth of semiconductors,” Prog. Cryst. Growth Charact. 27, 1–87 (1993).
[CrossRef]

E. Garcia-Caurel, L. Schwartz, B. Drévillon, “Application of Fourier-transform infrared ellipsometry to quantify biological molecules in animal tissues,” in Biomedical Vibrational Spectroscopy II, A. Mahadevan-Hansen, H. H. Mantsch, G. J. Puppels, eds., Proc. SPIE4614, 134–144 (2002).

Garcia-Caurel, E.

E. Garcia-Caurel, E. Bertran, A. Canillas, “Optimized calibration method for Fourier transform infrared phase-modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
[CrossRef]

E. Garcia-Caurel, L. Schwartz, B. Drévillon, “Application of Fourier-transform infrared ellipsometry to quantify biological molecules in animal tissues,” in Biomedical Vibrational Spectroscopy II, A. Mahadevan-Hansen, H. H. Mantsch, G. J. Puppels, eds., Proc. SPIE4614, 134–144 (2002).

Godet, C.

T. Heitz, B. Drévillon, C. Godet, J. E. Bourée, “Quantitative study of C—H bonding in polymerlike amorphous carbon films using in-situ infrared ellipsometry,” Phys. Rev. B 58, 13957–13961 (1998).
[CrossRef]

Heitz, T.

T. Heitz, B. Drévillon, C. Godet, J. E. Bourée, “Quantitative study of C—H bonding in polymerlike amorphous carbon films using in-situ infrared ellipsometry,” Phys. Rev. B 58, 13957–13961 (1998).
[CrossRef]

Hesse, M.

M. Hesse, H. Meier, B. Zeeh, Spectroscopic Methods in Organic Chemistry (Thieme, Stuttgart, Germany, 1997), pp. 29–70.

Katayama, H.

K. Yano, S. Ohoshima, Y. Shimizu, T. Moriguchi, H. Katayama, “Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method,” Cancer Lett. 110, 29–34 (1996).
[CrossRef] [PubMed]

Kuzmany, H.

H. Kuzmany, B. Burger, “Vibrational spectroscopy of metallic-, semi-, and superconductors,” J. Mol. Struct. 347, 39–55 (1995).
[CrossRef]

Leugers, M. A.

C. L. Putzing, M. A. Leugers, M. A. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, L. Yurga, “Infrared spectroscopy,” Anal. Chem. 66, 26R–66R (1994).
[CrossRef]

Lewis, R. N. A. H.

R. N. A. H. Lewis, R. N. McElHaney, “Fourier transform infrared spectroscopy in the study of hydrated lipids and lipid bilayer membranes,” in Infrared Spectroscopy of Biomolecules, H. H. Mantsch, D. Chapman, eds. (Wiley, New York, 1996), pp. 159–202.

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw Hill, New York, 1977), pp. 146–216.

Manfait, M.

W. Zeroual, M. Manfait, C. Choisi, “FT-IR spectroscopy study of perturbations induced by anti-biotic on bacteria,” Pathologie Biologie 43, 300–305 (1995).

McCreery, R. L.

R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000).

McElHaney, R. N.

R. N. A. H. Lewis, R. N. McElHaney, “Fourier transform infrared spectroscopy in the study of hydrated lipids and lipid bilayer membranes,” in Infrared Spectroscopy of Biomolecules, H. H. Mantsch, D. Chapman, eds. (Wiley, New York, 1996), pp. 159–202.

McKelvy, M. A.

C. L. Putzing, M. A. Leugers, M. A. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, L. Yurga, “Infrared spectroscopy,” Anal. Chem. 66, 26R–66R (1994).
[CrossRef]

Meier, H.

M. Hesse, H. Meier, B. Zeeh, Spectroscopic Methods in Organic Chemistry (Thieme, Stuttgart, Germany, 1997), pp. 29–70.

Mitchell, G. E.

C. L. Putzing, M. A. Leugers, M. A. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, L. Yurga, “Infrared spectroscopy,” Anal. Chem. 66, 26R–66R (1994).
[CrossRef]

Moriguchi, T.

K. Yano, S. Ohoshima, Y. Shimizu, T. Moriguchi, H. Katayama, “Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method,” Cancer Lett. 110, 29–34 (1996).
[CrossRef] [PubMed]

Moskovits, M.

M. J. Dignam, B. Rao, M. Moskovits, R. W. Stobie, “Ellipsometric determination of the spectra of adsorbed molecules,” Can. J. Chem. 49, 1115–1130 (1971).
[CrossRef]

Mourao, P. A. S.

M. S. Zierer, R. P. Vieira, B. Mulloy, P. A. S. Mourao, “A novel acidic glycogen extracted from the marine sponge Aplysina fulva (Porifera-Demospongiae),” Carbohydrate Res. 274, 233–244 (1995).
[CrossRef]

Mulloy, B.

M. S. Zierer, R. P. Vieira, B. Mulloy, P. A. S. Mourao, “A novel acidic glycogen extracted from the marine sponge Aplysina fulva (Porifera-Demospongiae),” Carbohydrate Res. 274, 233–244 (1995).
[CrossRef]

Nyquist, R. A.

C. L. Putzing, M. A. Leugers, M. A. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, L. Yurga, “Infrared spectroscopy,” Anal. Chem. 66, 26R–66R (1994).
[CrossRef]

Ohoshima, S.

K. Yano, S. Ohoshima, Y. Shimizu, T. Moriguchi, H. Katayama, “Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method,” Cancer Lett. 110, 29–34 (1996).
[CrossRef] [PubMed]

Papenfuss, R. R.

C. L. Putzing, M. A. Leugers, M. A. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, L. Yurga, “Infrared spectroscopy,” Anal. Chem. 66, 26R–66R (1994).
[CrossRef]

Pappas, D.

D. Pappas, B. W. Smith, J. D. Winefordner, “Raman spectroscopy in bioanalysis,” Talanta 51, 131–144 (2000).
[CrossRef]

Pascual, E.

A. Canillas, E. Pascual, B. Drévillon, “Phase-modulated ellipsometer using a Fourier transform infrared spectrometer for real time applications,” Rev. Sci. Instrum. 64, 2153–2158 (1993).
[CrossRef]

Putzing, C. L.

C. L. Putzing, M. A. Leugers, M. A. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, L. Yurga, “Infrared spectroscopy,” Anal. Chem. 66, 26R–66R (1994).
[CrossRef]

Rao, B.

M. J. Dignam, B. Rao, M. Moskovits, R. W. Stobie, “Ellipsometric determination of the spectra of adsorbed molecules,” Can. J. Chem. 49, 1115–1130 (1971).
[CrossRef]

Rigas, B.

M. A. Cohenford, B. Rigas, “Cytologically normal cells from neoplastic cervical samples display extensive structural abnormalities on IR spectroscopy: implications for tumor biology,” Biophysics 95, 15327–15332 (1998).

Schwartz, L.

E. Garcia-Caurel, L. Schwartz, B. Drévillon, “Application of Fourier-transform infrared ellipsometry to quantify biological molecules in animal tissues,” in Biomedical Vibrational Spectroscopy II, A. Mahadevan-Hansen, H. H. Mantsch, G. J. Puppels, eds., Proc. SPIE4614, 134–144 (2002).

Shimizu, Y.

K. Yano, S. Ohoshima, Y. Shimizu, T. Moriguchi, H. Katayama, “Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method,” Cancer Lett. 110, 29–34 (1996).
[CrossRef] [PubMed]

Smith, B. W.

D. Pappas, B. W. Smith, J. D. Winefordner, “Raman spectroscopy in bioanalysis,” Talanta 51, 131–144 (2000).
[CrossRef]

Stobie, R. W.

M. J. Dignam, B. Rao, M. Moskovits, R. W. Stobie, “Ellipsometric determination of the spectra of adsorbed molecules,” Can. J. Chem. 49, 1115–1130 (1971).
[CrossRef]

Vieira, R. P.

M. S. Zierer, R. P. Vieira, B. Mulloy, P. A. S. Mourao, “A novel acidic glycogen extracted from the marine sponge Aplysina fulva (Porifera-Demospongiae),” Carbohydrate Res. 274, 233–244 (1995).
[CrossRef]

Winefordner, J. D.

D. Pappas, B. W. Smith, J. D. Winefordner, “Raman spectroscopy in bioanalysis,” Talanta 51, 131–144 (2000).
[CrossRef]

Yano, K.

K. Yano, S. Ohoshima, Y. Shimizu, T. Moriguchi, H. Katayama, “Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method,” Cancer Lett. 110, 29–34 (1996).
[CrossRef] [PubMed]

Yurga, L.

C. L. Putzing, M. A. Leugers, M. A. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, L. Yurga, “Infrared spectroscopy,” Anal. Chem. 66, 26R–66R (1994).
[CrossRef]

Zeeh, B.

M. Hesse, H. Meier, B. Zeeh, Spectroscopic Methods in Organic Chemistry (Thieme, Stuttgart, Germany, 1997), pp. 29–70.

Zeroual, W.

W. Zeroual, M. Manfait, C. Choisi, “FT-IR spectroscopy study of perturbations induced by anti-biotic on bacteria,” Pathologie Biologie 43, 300–305 (1995).

Zierer, M. S.

M. S. Zierer, R. P. Vieira, B. Mulloy, P. A. S. Mourao, “A novel acidic glycogen extracted from the marine sponge Aplysina fulva (Porifera-Demospongiae),” Carbohydrate Res. 274, 233–244 (1995).
[CrossRef]

Anal. Chem.

C. L. Putzing, M. A. Leugers, M. A. McKelvy, G. E. Mitchell, R. A. Nyquist, R. R. Papenfuss, L. Yurga, “Infrared spectroscopy,” Anal. Chem. 66, 26R–66R (1994).
[CrossRef]

Biophysics

M. A. Cohenford, B. Rigas, “Cytologically normal cells from neoplastic cervical samples display extensive structural abnormalities on IR spectroscopy: implications for tumor biology,” Biophysics 95, 15327–15332 (1998).

Can. J. Chem.

M. J. Dignam, B. Rao, M. Moskovits, R. W. Stobie, “Ellipsometric determination of the spectra of adsorbed molecules,” Can. J. Chem. 49, 1115–1130 (1971).
[CrossRef]

Cancer Lett.

K. Yano, S. Ohoshima, Y. Shimizu, T. Moriguchi, H. Katayama, “Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method,” Cancer Lett. 110, 29–34 (1996).
[CrossRef] [PubMed]

Carbohydrate Res.

M. S. Zierer, R. P. Vieira, B. Mulloy, P. A. S. Mourao, “A novel acidic glycogen extracted from the marine sponge Aplysina fulva (Porifera-Demospongiae),” Carbohydrate Res. 274, 233–244 (1995).
[CrossRef]

J. Mol. Struct.

H. Kuzmany, B. Burger, “Vibrational spectroscopy of metallic-, semi-, and superconductors,” J. Mol. Struct. 347, 39–55 (1995).
[CrossRef]

Pathologie Biologie

W. Zeroual, M. Manfait, C. Choisi, “FT-IR spectroscopy study of perturbations induced by anti-biotic on bacteria,” Pathologie Biologie 43, 300–305 (1995).

Phys. Rev. B

T. Heitz, B. Drévillon, C. Godet, J. E. Bourée, “Quantitative study of C—H bonding in polymerlike amorphous carbon films using in-situ infrared ellipsometry,” Phys. Rev. B 58, 13957–13961 (1998).
[CrossRef]

Prog. Cryst. Growth Charact.

B. Drévillon, “Phase modulated ellipsometry from the ultraviolet to the infrared: in situ application to the growth of semiconductors,” Prog. Cryst. Growth Charact. 27, 1–87 (1993).
[CrossRef]

Rev. Sci. Instrum.

A. Canillas, E. Pascual, B. Drévillon, “Phase-modulated ellipsometer using a Fourier transform infrared spectrometer for real time applications,” Rev. Sci. Instrum. 64, 2153–2158 (1993).
[CrossRef]

Talanta

D. Pappas, B. W. Smith, J. D. Winefordner, “Raman spectroscopy in bioanalysis,” Talanta 51, 131–144 (2000).
[CrossRef]

Thin Solid Films

E. Garcia-Caurel, E. Bertran, A. Canillas, “Optimized calibration method for Fourier transform infrared phase-modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
[CrossRef]

Other

R. N. A. H. Lewis, R. N. McElHaney, “Fourier transform infrared spectroscopy in the study of hydrated lipids and lipid bilayer membranes,” in Infrared Spectroscopy of Biomolecules, H. H. Mantsch, D. Chapman, eds. (Wiley, New York, 1996), pp. 159–202.

E. D. Palik, ed., Handbook of Optical Constants I (Academic, Orlando, Fla., 1985).

E. D. Palik, ed., Handbook of Optical Constants II (Academic, Boston, 1997).

R. M. A. Azzam, N. M. Bashara, “Reflection and transmission of polarized light by stratified planar structures,” in Ellipsometry and Polarized Light, R. M. A. Azzam, N. M. Bashara (North-Holland, Amsterdam, 1989)pp. 269–363.

E. Garcia-Caurel, L. Schwartz, B. Drévillon, “Application of Fourier-transform infrared ellipsometry to quantify biological molecules in animal tissues,” in Biomedical Vibrational Spectroscopy II, A. Mahadevan-Hansen, H. H. Mantsch, G. J. Puppels, eds., Proc. SPIE4614, 134–144 (2002).

R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000).

D. A. Long, Raman Spectroscopy (McGraw Hill, New York, 1977), pp. 146–216.

M. Hesse, H. Meier, B. Zeeh, Spectroscopic Methods in Organic Chemistry (Thieme, Stuttgart, Germany, 1997), pp. 29–70.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulated Re D, Im D, and |Im′ D| spectra that correspond to a gold substrate covered with a dielectric thin film showing two absorptions centered at 2005 and 2060 cm-1. For clarity reasons, the spectral values corresponding to Re D has been shifted 0.2 units upward.

Fig. 2
Fig. 2

Measured Re D and |Im′ D| spectra corresponding to the dry glycogen layers from three aqueous solutions prepared with different glycogen concentrations.

Fig. 3
Fig. 3

Normalized area under the absorption band appearing in |Im′ D| between 1030 and 1150 cm-1 for all the samples (circles) and the best-fitted linear regression (solid line).

Fig. 4
Fig. 4

Calculated area under the simulated absorption as a function of the layer thickness.

Fig. 5
Fig. 5

Calculated area under the simulated absorption as a function of the layer thickness from 0 to 4 µm. The linear fit (solid curve) and the quadratic fit (dashed curve) delimit the thickness range for which a linear behavior and the quadratic behavior can be approximated. For layer thickness over 3 µm, a nonlinear behavior is observed that cannot be explained with a simple expression such as Eq. (8).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ρ=rp/rs=tan Ψ expjΔ,
D=lntan Ψ¯tan Ψ+jΔ¯-Δ
m=46cπR3.
m=ρ0dπR2.
d=46Rρ0c.
D=ln1+rp,12rp,23 exp-jxrp,12+rp,23 exp-jxrp,12+rp,231+rp,12rp,23-ln1+rs,12rs,23 exp-jxrs,12+rs,23 exp-jxrs,12+rs,231+rs,12rs,23, x=4πd/λ1n2 cos ϕ2.
D=j4πdλ1sin ϕ1 tan ϕ111/22-122-3β×1-T2+, T2=2πdλ1 tan2 ϕ1-1 sin2 ϕ1-31/2β, β=-1-31 tan2 ϕ1-3/3, =11-1/2-1/3+21/33, =2-21+21/3.
D=j4πdλ0sin ϕ1 tan ϕ11-12×1-2πdλ02-231/2+.

Metrics