Abstract

A new approach to measuring the sizes of small fluorescent objects by use of spatially modulated illumination (SMI) far-field light microscopy is presented. This method is based on SMI measurements combined with a new SMI virtual microscopy (VIM) data analysis calibration algorithm. Here, experimental SMI measurements of fluorescent objects with known diameter (size) were made. From the SMI data obtained, the size was determined in an independent way by use of the SMI VIM algorithm. The results showed that with SMI microscopy in combination with SMI VIM calibration, subwavelength object size measurements as small as 40 nm are experimentally feasible with high accuracy.

© 2002 Optical Society of America

Full Article  |  PDF Article

Corrections

Antoinio Virgilio Failla, Udo Spoeri, Benno Albrecht, Alexander Kroll, and Christoph Cremer, "Nanosizing of fluorescent objects by spatially modulated illuminated microscopy: erratum," Appl. Opt. 42, 1308-1308 (2003)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-42-7-1308

References

  • View by:
  • |
  • |
  • |

  1. G. Blobel, “Gene gating: a hypothesis,” Proc. Natl. Acad. Sci. USA 82, 8527–8530 (1985).
    [CrossRef] [PubMed]
  2. T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
    [CrossRef] [PubMed]
  3. A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science. 280, 547–553 (1996).
    [CrossRef]
  4. T. Cremer, C. Cremer, “Nuclear architecture and gene regulation in mammalian cells,” Nature Rev. Genetics 4, 292–301 (2001).
    [CrossRef]
  5. D. L. Spector, “Nuclear organization and gene expression,” Exp. Cell. Res. 229, 189–197 (1996).
    [CrossRef] [PubMed]
  6. P. R. Cook, “The organization of replication and transcription,” Science 284, 1790–1795 (1999).
    [CrossRef] [PubMed]
  7. A. Pombo, D. A. Jackson, F. J. Iborra, M. Hollinshead, H. Kimura, K. Sugaya, P. R. Cook, “Transcription factories,” in Proceedings of Twelfth European Congress on Electron Microscope, Volume IBiological Sciences (n.p., 2000), pp. B461–B464.
  8. A. Pombo, P. Cuello, W. Schul, J.-B. Yoon, R. G. Roeder, P. R. Cook, S. Murphy, “Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and Pika antigens associates with specific chromosomes early in the cell cycle,” EMBO J. 17, 1768–1778 (1998).
    [CrossRef] [PubMed]
  9. A. Pombo, M. Hollinshead, P. R. Cook, “Bridging the resolution gap: imaging the same transcription factories in cryosections by light and electron microscopy,” Histochem. Cytochem. 47, 471–480 (1999).
    [CrossRef]
  10. A. Esa, P. Edelmann, A. L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-color labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
    [CrossRef] [PubMed]
  11. T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemia, A. P. Alivistatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA. 97, 9461–9466 (2000).
    [CrossRef] [PubMed]
  12. H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High precision distance measurements and volume-conserving segmentation of objects near and below the resolution in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
    [CrossRef]
  13. B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing wave excitation,” Nature 366, 44–48 (1993).
    [CrossRef] [PubMed]
  14. B. Schneider, J. Bradl, I. Kirsten, M. Hausmann, C. Cremer, “High precision localization of fluorescent targets in the nanometer range by spatially modulated excitation fluorescence microscopy,” in Fluorescence Microscopy & Fluorescence Probes, J. Slavik, ed. (Plenum, New York, 1998), Vol. 2, pp. 63–68.
  15. A. V. Failla, C. Cremer, “Virtual spatially modulated illumination microscopy predicts nanometer precision of axial distance measurements,” in Optical Diagnostics of Living Cells IV, D. L. Farkas, R. C. Leif, eds., Proc. SPIE4260, 120–126 (2001).
  16. B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy allows axial distance resolution near one nanometer,” Appl. Opt. 41, 80–87 (2002).
    [CrossRef] [PubMed]
  17. B. Albrecht, R. Heintzmann, C. Cremer, “Online visualization of axial intensity distribution in spatially modulated illumination microscopy,” in Optical Diagnostics of Living Cells IV, D. L. Farkas, R. C. Leif, eds., Proc. SPIE4260, 127–140 (2001).
  18. S. W. Hell, S. Lindek, E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy two photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41, 675–681 (1994).
    [CrossRef]
  19. S. W. Hell, E. H. K. Stelzer, S. Lindek, C. Cremer, “Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy,” Opt. Lett. 19, 222–224 (1994).
    [CrossRef] [PubMed]
  20. S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of the 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
    [CrossRef]
  21. S. Lindek, E. H. K. Stelzer, C. Cremer, “Confocal theta fluorescence microscopy with annular aperture,” Appl. Opt. 35, 126–130 (1996).
    [CrossRef] [PubMed]
  22. T. A. Klar, S. Jacobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA. 87, 8206–8210 (2000).
    [CrossRef]
  23. M. G. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide field microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds, Proc. SPIE2412, 147–156 (1995).
  24. A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-Dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
    [CrossRef]
  25. J. T. Frohn, H. F. Knapp, A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. USA 97, 7232–7236 (2000).
    [CrossRef] [PubMed]
  26. J. T. Frohn, H. F. Knapp, A. Stemmer, “Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation,” Opt. Lett. 26, 828–830 (2001).
    [CrossRef]
  27. A. V. Failla, A. Cavallo, C. Cremer, “Subwavelength size determination using SMI virtual microscopy,” Appl. Opt. 41, 6651–6659 (2002).
    [CrossRef] [PubMed]

2002 (2)

2001 (2)

J. T. Frohn, H. F. Knapp, A. Stemmer, “Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation,” Opt. Lett. 26, 828–830 (2001).
[CrossRef]

T. Cremer, C. Cremer, “Nuclear architecture and gene regulation in mammalian cells,” Nature Rev. Genetics 4, 292–301 (2001).
[CrossRef]

2000 (4)

A. Esa, P. Edelmann, A. L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-color labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemia, A. P. Alivistatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA. 97, 9461–9466 (2000).
[CrossRef] [PubMed]

T. A. Klar, S. Jacobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA. 87, 8206–8210 (2000).
[CrossRef]

J. T. Frohn, H. F. Knapp, A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. USA 97, 7232–7236 (2000).
[CrossRef] [PubMed]

1999 (2)

P. R. Cook, “The organization of replication and transcription,” Science 284, 1790–1795 (1999).
[CrossRef] [PubMed]

A. Pombo, M. Hollinshead, P. R. Cook, “Bridging the resolution gap: imaging the same transcription factories in cryosections by light and electron microscopy,” Histochem. Cytochem. 47, 471–480 (1999).
[CrossRef]

1998 (3)

A. Pombo, P. Cuello, W. Schul, J.-B. Yoon, R. G. Roeder, P. R. Cook, S. Murphy, “Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and Pika antigens associates with specific chromosomes early in the cell cycle,” EMBO J. 17, 1768–1778 (1998).
[CrossRef] [PubMed]

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High precision distance measurements and volume-conserving segmentation of objects near and below the resolution in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-Dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

1996 (3)

S. Lindek, E. H. K. Stelzer, C. Cremer, “Confocal theta fluorescence microscopy with annular aperture,” Appl. Opt. 35, 126–130 (1996).
[CrossRef] [PubMed]

A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science. 280, 547–553 (1996).
[CrossRef]

D. L. Spector, “Nuclear organization and gene expression,” Exp. Cell. Res. 229, 189–197 (1996).
[CrossRef] [PubMed]

1994 (3)

S. W. Hell, S. Lindek, E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy two photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41, 675–681 (1994).
[CrossRef]

S. W. Hell, E. H. K. Stelzer, S. Lindek, C. Cremer, “Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy,” Opt. Lett. 19, 222–224 (1994).
[CrossRef] [PubMed]

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of the 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

1993 (2)

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

1985 (1)

G. Blobel, “Gene gating: a hypothesis,” Proc. Natl. Acad. Sci. USA 82, 8527–8530 (1985).
[CrossRef] [PubMed]

Agard, D. A.

M. G. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide field microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds, Proc. SPIE2412, 147–156 (1995).

Albrecht, B.

B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy allows axial distance resolution near one nanometer,” Appl. Opt. 41, 80–87 (2002).
[CrossRef] [PubMed]

B. Albrecht, R. Heintzmann, C. Cremer, “Online visualization of axial intensity distribution in spatially modulated illumination microscopy,” in Optical Diagnostics of Living Cells IV, D. L. Farkas, R. C. Leif, eds., Proc. SPIE4260, 127–140 (2001).

Alivistatos, A. P.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemia, A. P. Alivistatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA. 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Amariglio, N.

A. Esa, P. Edelmann, A. L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-color labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

Bailey, B.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Blobel, G.

G. Blobel, “Gene gating: a hypothesis,” Proc. Natl. Acad. Sci. USA 82, 8527–8530 (1985).
[CrossRef] [PubMed]

Bornfleth, H.

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High precision distance measurements and volume-conserving segmentation of objects near and below the resolution in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

Bradl, J.

B. Schneider, J. Bradl, I. Kirsten, M. Hausmann, C. Cremer, “High precision localization of fluorescent targets in the nanometer range by spatially modulated excitation fluorescence microscopy,” in Fluorescence Microscopy & Fluorescence Probes, J. Slavik, ed. (Plenum, New York, 1998), Vol. 2, pp. 63–68.

Brakenhoff, G. J.

A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-Dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Cavallo, A.

Chemia, D. S.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemia, A. P. Alivistatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA. 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Cook, P. R.

A. Pombo, M. Hollinshead, P. R. Cook, “Bridging the resolution gap: imaging the same transcription factories in cryosections by light and electron microscopy,” Histochem. Cytochem. 47, 471–480 (1999).
[CrossRef]

P. R. Cook, “The organization of replication and transcription,” Science 284, 1790–1795 (1999).
[CrossRef] [PubMed]

A. Pombo, P. Cuello, W. Schul, J.-B. Yoon, R. G. Roeder, P. R. Cook, S. Murphy, “Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and Pika antigens associates with specific chromosomes early in the cell cycle,” EMBO J. 17, 1768–1778 (1998).
[CrossRef] [PubMed]

A. Pombo, D. A. Jackson, F. J. Iborra, M. Hollinshead, H. Kimura, K. Sugaya, P. R. Cook, “Transcription factories,” in Proceedings of Twelfth European Congress on Electron Microscope, Volume IBiological Sciences (n.p., 2000), pp. B461–B464.

Cremer, C.

A. V. Failla, A. Cavallo, C. Cremer, “Subwavelength size determination using SMI virtual microscopy,” Appl. Opt. 41, 6651–6659 (2002).
[CrossRef] [PubMed]

B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy allows axial distance resolution near one nanometer,” Appl. Opt. 41, 80–87 (2002).
[CrossRef] [PubMed]

T. Cremer, C. Cremer, “Nuclear architecture and gene regulation in mammalian cells,” Nature Rev. Genetics 4, 292–301 (2001).
[CrossRef]

A. Esa, P. Edelmann, A. L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-color labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High precision distance measurements and volume-conserving segmentation of objects near and below the resolution in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

S. Lindek, E. H. K. Stelzer, C. Cremer, “Confocal theta fluorescence microscopy with annular aperture,” Appl. Opt. 35, 126–130 (1996).
[CrossRef] [PubMed]

S. W. Hell, E. H. K. Stelzer, S. Lindek, C. Cremer, “Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy,” Opt. Lett. 19, 222–224 (1994).
[CrossRef] [PubMed]

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of the 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

B. Schneider, J. Bradl, I. Kirsten, M. Hausmann, C. Cremer, “High precision localization of fluorescent targets in the nanometer range by spatially modulated excitation fluorescence microscopy,” in Fluorescence Microscopy & Fluorescence Probes, J. Slavik, ed. (Plenum, New York, 1998), Vol. 2, pp. 63–68.

A. V. Failla, C. Cremer, “Virtual spatially modulated illumination microscopy predicts nanometer precision of axial distance measurements,” in Optical Diagnostics of Living Cells IV, D. L. Farkas, R. C. Leif, eds., Proc. SPIE4260, 120–126 (2001).

B. Albrecht, R. Heintzmann, C. Cremer, “Online visualization of axial intensity distribution in spatially modulated illumination microscopy,” in Optical Diagnostics of Living Cells IV, D. L. Farkas, R. C. Leif, eds., Proc. SPIE4260, 127–140 (2001).

Cremer, T.

T. Cremer, C. Cremer, “Nuclear architecture and gene regulation in mammalian cells,” Nature Rev. Genetics 4, 292–301 (2001).
[CrossRef]

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Cuello, P.

A. Pombo, P. Cuello, W. Schul, J.-B. Yoon, R. G. Roeder, P. R. Cook, S. Murphy, “Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and Pika antigens associates with specific chromosomes early in the cell cycle,” EMBO J. 17, 1768–1778 (1998).
[CrossRef] [PubMed]

Dietzel, S.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Dyba, M.

T. A. Klar, S. Jacobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA. 87, 8206–8210 (2000).
[CrossRef]

Earnshaw, W. C.

A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science. 280, 547–553 (1996).
[CrossRef]

Edelmann, P.

A. Esa, P. Edelmann, A. L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-color labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

Egner, A.

T. A. Klar, S. Jacobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA. 87, 8206–8210 (2000).
[CrossRef]

Eils, R.

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High precision distance measurements and volume-conserving segmentation of objects near and below the resolution in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

Emmerich, P.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Esa, A.

A. Esa, P. Edelmann, A. L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-color labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

Failla, A. V.

B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy allows axial distance resolution near one nanometer,” Appl. Opt. 41, 80–87 (2002).
[CrossRef] [PubMed]

A. V. Failla, A. Cavallo, C. Cremer, “Subwavelength size determination using SMI virtual microscopy,” Appl. Opt. 41, 6651–6659 (2002).
[CrossRef] [PubMed]

A. V. Failla, C. Cremer, “Virtual spatially modulated illumination microscopy predicts nanometer precision of axial distance measurements,” in Optical Diagnostics of Living Cells IV, D. L. Farkas, R. C. Leif, eds., Proc. SPIE4260, 120–126 (2001).

Farkas, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Frohn, J. T.

J. T. Frohn, H. F. Knapp, A. Stemmer, “Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation,” Opt. Lett. 26, 828–830 (2001).
[CrossRef]

J. T. Frohn, H. F. Knapp, A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. USA 97, 7232–7236 (2000).
[CrossRef] [PubMed]

Gustafsson, M. G.

M. G. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide field microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds, Proc. SPIE2412, 147–156 (1995).

Hausmann, M.

A. Esa, P. Edelmann, A. L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-color labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

B. Schneider, J. Bradl, I. Kirsten, M. Hausmann, C. Cremer, “High precision localization of fluorescent targets in the nanometer range by spatially modulated excitation fluorescence microscopy,” in Fluorescence Microscopy & Fluorescence Probes, J. Slavik, ed. (Plenum, New York, 1998), Vol. 2, pp. 63–68.

Heintzmann, R.

B. Albrecht, R. Heintzmann, C. Cremer, “Online visualization of axial intensity distribution in spatially modulated illumination microscopy,” in Optical Diagnostics of Living Cells IV, D. L. Farkas, R. C. Leif, eds., Proc. SPIE4260, 127–140 (2001).

Hell, S. W.

T. A. Klar, S. Jacobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA. 87, 8206–8210 (2000).
[CrossRef]

S. W. Hell, E. H. K. Stelzer, S. Lindek, C. Cremer, “Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy,” Opt. Lett. 19, 222–224 (1994).
[CrossRef] [PubMed]

S. W. Hell, S. Lindek, E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy two photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41, 675–681 (1994).
[CrossRef]

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of the 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

Hollinshead, M.

A. Pombo, M. Hollinshead, P. R. Cook, “Bridging the resolution gap: imaging the same transcription factories in cryosections by light and electron microscopy,” Histochem. Cytochem. 47, 471–480 (1999).
[CrossRef]

A. Pombo, D. A. Jackson, F. J. Iborra, M. Hollinshead, H. Kimura, K. Sugaya, P. R. Cook, “Transcription factories,” in Proceedings of Twelfth European Congress on Electron Microscope, Volume IBiological Sciences (n.p., 2000), pp. B461–B464.

Iborra, F. J.

A. Pombo, D. A. Jackson, F. J. Iborra, M. Hollinshead, H. Kimura, K. Sugaya, P. R. Cook, “Transcription factories,” in Proceedings of Twelfth European Congress on Electron Microscope, Volume IBiological Sciences (n.p., 2000), pp. B461–B464.

Jackson, D. A.

A. Pombo, D. A. Jackson, F. J. Iborra, M. Hollinshead, H. Kimura, K. Sugaya, P. R. Cook, “Transcription factories,” in Proceedings of Twelfth European Congress on Electron Microscope, Volume IBiological Sciences (n.p., 2000), pp. B461–B464.

Jacobs, S.

T. A. Klar, S. Jacobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA. 87, 8206–8210 (2000).
[CrossRef]

Jauch, A.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Kimura, H.

A. Pombo, D. A. Jackson, F. J. Iborra, M. Hollinshead, H. Kimura, K. Sugaya, P. R. Cook, “Transcription factories,” in Proceedings of Twelfth European Congress on Electron Microscope, Volume IBiological Sciences (n.p., 2000), pp. B461–B464.

Kirsten, I.

B. Schneider, J. Bradl, I. Kirsten, M. Hausmann, C. Cremer, “High precision localization of fluorescent targets in the nanometer range by spatially modulated excitation fluorescence microscopy,” in Fluorescence Microscopy & Fluorescence Probes, J. Slavik, ed. (Plenum, New York, 1998), Vol. 2, pp. 63–68.

Klar, T. A.

T. A. Klar, S. Jacobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA. 87, 8206–8210 (2000).
[CrossRef]

Knapp, H. F.

J. T. Frohn, H. F. Knapp, A. Stemmer, “Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation,” Opt. Lett. 26, 828–830 (2001).
[CrossRef]

J. T. Frohn, H. F. Knapp, A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. USA 97, 7232–7236 (2000).
[CrossRef] [PubMed]

Köhler, J.

A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-Dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Kurz, A.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Lacoste, T. D.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemia, A. P. Alivistatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA. 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Lamond, A. I.

A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science. 280, 547–553 (1996).
[CrossRef]

Lanni, F.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Lichter, P.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Lindek, S.

S. Lindek, E. H. K. Stelzer, C. Cremer, “Confocal theta fluorescence microscopy with annular aperture,” Appl. Opt. 35, 126–130 (1996).
[CrossRef] [PubMed]

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of the 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

S. W. Hell, E. H. K. Stelzer, S. Lindek, C. Cremer, “Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy,” Opt. Lett. 19, 222–224 (1994).
[CrossRef] [PubMed]

S. W. Hell, S. Lindek, E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy two photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41, 675–681 (1994).
[CrossRef]

Mathieu, U.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Michalet, X.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemia, A. P. Alivistatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA. 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Müller, M.

A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-Dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Murphy, S.

A. Pombo, P. Cuello, W. Schul, J.-B. Yoon, R. G. Roeder, P. R. Cook, S. Murphy, “Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and Pika antigens associates with specific chromosomes early in the cell cycle,” EMBO J. 17, 1768–1778 (1998).
[CrossRef] [PubMed]

Pinaud, F.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemia, A. P. Alivistatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA. 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Pombo, A.

A. Pombo, M. Hollinshead, P. R. Cook, “Bridging the resolution gap: imaging the same transcription factories in cryosections by light and electron microscopy,” Histochem. Cytochem. 47, 471–480 (1999).
[CrossRef]

A. Pombo, P. Cuello, W. Schul, J.-B. Yoon, R. G. Roeder, P. R. Cook, S. Murphy, “Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and Pika antigens associates with specific chromosomes early in the cell cycle,” EMBO J. 17, 1768–1778 (1998).
[CrossRef] [PubMed]

A. Pombo, D. A. Jackson, F. J. Iborra, M. Hollinshead, H. Kimura, K. Sugaya, P. R. Cook, “Transcription factories,” in Proceedings of Twelfth European Congress on Electron Microscope, Volume IBiological Sciences (n.p., 2000), pp. B461–B464.

Rechavi, G.

A. Esa, P. Edelmann, A. L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-color labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

Ried, T.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Rinke, B.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Roeder, R. G.

A. Pombo, P. Cuello, W. Schul, J.-B. Yoon, R. G. Roeder, P. R. Cook, S. Murphy, “Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and Pika antigens associates with specific chromosomes early in the cell cycle,” EMBO J. 17, 1768–1778 (1998).
[CrossRef] [PubMed]

Sätzler, K.

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High precision distance measurements and volume-conserving segmentation of objects near and below the resolution in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

Scherthan, H.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Schmidt, J.

A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-Dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Schneider, B.

B. Schneider, J. Bradl, I. Kirsten, M. Hausmann, C. Cremer, “High precision localization of fluorescent targets in the nanometer range by spatially modulated excitation fluorescence microscopy,” in Fluorescence Microscopy & Fluorescence Probes, J. Slavik, ed. (Plenum, New York, 1998), Vol. 2, pp. 63–68.

Schröck, E.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Schul, W.

A. Pombo, P. Cuello, W. Schul, J.-B. Yoon, R. G. Roeder, P. R. Cook, S. Murphy, “Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and Pika antigens associates with specific chromosomes early in the cell cycle,” EMBO J. 17, 1768–1778 (1998).
[CrossRef] [PubMed]

Schweitzer, A.

Sedat, J. W.

M. G. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide field microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds, Proc. SPIE2412, 147–156 (1995).

Spector, D. L.

D. L. Spector, “Nuclear organization and gene expression,” Exp. Cell. Res. 229, 189–197 (1996).
[CrossRef] [PubMed]

Speicher, M. R.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Stelzer, E. H. K.

S. Lindek, E. H. K. Stelzer, C. Cremer, “Confocal theta fluorescence microscopy with annular aperture,” Appl. Opt. 35, 126–130 (1996).
[CrossRef] [PubMed]

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of the 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

S. W. Hell, S. Lindek, E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy two photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41, 675–681 (1994).
[CrossRef]

S. W. Hell, E. H. K. Stelzer, S. Lindek, C. Cremer, “Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy,” Opt. Lett. 19, 222–224 (1994).
[CrossRef] [PubMed]

Stemmer, A.

J. T. Frohn, H. F. Knapp, A. Stemmer, “Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation,” Opt. Lett. 26, 828–830 (2001).
[CrossRef]

J. T. Frohn, H. F. Knapp, A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. USA 97, 7232–7236 (2000).
[CrossRef] [PubMed]

Sugaya, K.

A. Pombo, D. A. Jackson, F. J. Iborra, M. Hollinshead, H. Kimura, K. Sugaya, P. R. Cook, “Transcription factories,” in Proceedings of Twelfth European Congress on Electron Microscope, Volume IBiological Sciences (n.p., 2000), pp. B461–B464.

Taylor, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Trakthenbrot, A. L.

A. Esa, P. Edelmann, A. L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-color labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

van Oijen, A. M.

A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-Dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Weiss, S.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemia, A. P. Alivistatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA. 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Yoon, J.-B.

A. Pombo, P. Cuello, W. Schul, J.-B. Yoon, R. G. Roeder, P. R. Cook, S. Murphy, “Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and Pika antigens associates with specific chromosomes early in the cell cycle,” EMBO J. 17, 1768–1778 (1998).
[CrossRef] [PubMed]

Zirbel, R.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of the 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

Chem. Phys. Lett. (1)

A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-Dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Cold Spring Harbor Symp. Quant. Biol. (1)

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harbor Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

EMBO J. (1)

A. Pombo, P. Cuello, W. Schul, J.-B. Yoon, R. G. Roeder, P. R. Cook, S. Murphy, “Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and Pika antigens associates with specific chromosomes early in the cell cycle,” EMBO J. 17, 1768–1778 (1998).
[CrossRef] [PubMed]

Exp. Cell. Res. (1)

D. L. Spector, “Nuclear organization and gene expression,” Exp. Cell. Res. 229, 189–197 (1996).
[CrossRef] [PubMed]

Histochem. Cytochem. (1)

A. Pombo, M. Hollinshead, P. R. Cook, “Bridging the resolution gap: imaging the same transcription factories in cryosections by light and electron microscopy,” Histochem. Cytochem. 47, 471–480 (1999).
[CrossRef]

J. Microsc. (2)

A. Esa, P. Edelmann, A. L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-color labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High precision distance measurements and volume-conserving segmentation of objects near and below the resolution in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

J. Mod. Opt. (1)

S. W. Hell, S. Lindek, E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy two photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41, 675–681 (1994).
[CrossRef]

Nature (1)

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Nature Rev. Genetics (1)

T. Cremer, C. Cremer, “Nuclear architecture and gene regulation in mammalian cells,” Nature Rev. Genetics 4, 292–301 (2001).
[CrossRef]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (2)

J. T. Frohn, H. F. Knapp, A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. USA 97, 7232–7236 (2000).
[CrossRef] [PubMed]

G. Blobel, “Gene gating: a hypothesis,” Proc. Natl. Acad. Sci. USA 82, 8527–8530 (1985).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA. (2)

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemia, A. P. Alivistatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA. 97, 9461–9466 (2000).
[CrossRef] [PubMed]

T. A. Klar, S. Jacobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA. 87, 8206–8210 (2000).
[CrossRef]

Science (1)

P. R. Cook, “The organization of replication and transcription,” Science 284, 1790–1795 (1999).
[CrossRef] [PubMed]

Science. (1)

A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science. 280, 547–553 (1996).
[CrossRef]

Other (5)

A. Pombo, D. A. Jackson, F. J. Iborra, M. Hollinshead, H. Kimura, K. Sugaya, P. R. Cook, “Transcription factories,” in Proceedings of Twelfth European Congress on Electron Microscope, Volume IBiological Sciences (n.p., 2000), pp. B461–B464.

B. Albrecht, R. Heintzmann, C. Cremer, “Online visualization of axial intensity distribution in spatially modulated illumination microscopy,” in Optical Diagnostics of Living Cells IV, D. L. Farkas, R. C. Leif, eds., Proc. SPIE4260, 127–140 (2001).

B. Schneider, J. Bradl, I. Kirsten, M. Hausmann, C. Cremer, “High precision localization of fluorescent targets in the nanometer range by spatially modulated excitation fluorescence microscopy,” in Fluorescence Microscopy & Fluorescence Probes, J. Slavik, ed. (Plenum, New York, 1998), Vol. 2, pp. 63–68.

A. V. Failla, C. Cremer, “Virtual spatially modulated illumination microscopy predicts nanometer precision of axial distance measurements,” in Optical Diagnostics of Living Cells IV, D. L. Farkas, R. C. Leif, eds., Proc. SPIE4260, 120–126 (2001).

M. G. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide field microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds, Proc. SPIE2412, 147–156 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SMI microscope setup: Briefly, it consists of a rectangular interferometer with a 50:50 beam splitter. Two vertically polarized beams are focused into the back focal plane of a corresponding objective lens. Between the two objective lenses a standing-wave field is produced. Objects mounted upon a conventional glass slide and covered by a conventional coverslip can be moved along the axial direction as the object translation stage is moved by stepper motors. For the detection, a cooled color CCD camera is used.

Fig. 2
Fig. 2

Principles of SMI imaging: (A) Representation of the axial PSF (right); for more details see text (Subsection 2.C). Ordinate, fluorescence intensity; abscissa, axial coordinate. (B) AID of an extended object. By measuring the modulation contrast ratio R between M g and M (see Subsections 2.C and 2.D) it is possible to obtain information about the size of the object along the axial direction. Left, object disturbance induced by a small object (axial diameter, 60 nm). Right object disturbance induced by a large object (axial diameter, 140 nm).

Fig. 3
Fig. 3

Principles of SMI nanosizing: (A) Experimental examples of SMI xy viewing fields with beads visible as small white dots are presented at the left; the AIDs shown at the right indicate the intensity distributions for the objects encircled. VIM calibration allowed us to extract the parameters of the axial AID and to measure modulation contrast R [see Eq. (2)]. (B) Using SMI VIM calibration functions R = f(S), we could determine size S of the fluorescent objects with the AIDs indicated at the left.

Fig. 4
Fig. 4

Nanosizing of individual identified objects. In each 3D-data stack (N = 1, 2, 3, 10) containing a number of beads (e.g., n tot = 13 in the case of 40-nm ∅ red beads), these beads were identified arbitrarily (N b = 1, N b = 2, … . The size of each identified bead in each data stack was evaluated by SMI nanosizing (for more details, see Fig. 3). For example, considering the 40-nm ∅ red beads in data stack N = 1, a size of 33.6 nm for bead N b = 1 was determined; in data stack N = 2 the size of the same bead, N b = 1, was measured to be 28.3 nm; note that, in the epifluorescent image, no differences are observed. Therefore in the schematic representation the three boxes (N = 1, 2, 3) are identical.

Fig. 5
Fig. 5

Experimental SMI nanosizing of top, 40-nm ∅ and bottom, 90-nm ∅ red beads: The results of ten independent size (i.e., ten independent 3D-data stacks) measurements are shown. Individual error bars: SDM of the single 3D data stacks; dotted lines indicate SD of the mean of the bead ensemble values. For more details, see Section 3.

Fig. 6
Fig. 6

Experimental SMI nanosizing of 100-nm ∅ green beads: The results of ten independent measurements (ten 3D-data stacks) are shown. For more details, see Section 3 and Fig. 5.

Fig. 7
Fig. 7

Experimental SMI nanosizing of 50-nm ∅ green beads: The results of four independent measurements are shown. For more details see Section 3.

Tables (3)

Tables Icon

Table 1 Summary of Nanosizing Resultsa

Tables Icon

Table 2 Numerical Presentation of Nanosizing Results from 50-nm Green Beadsa

Tables Icon

Table 3 Numerical Presentation of Nanosizing Measurements Performed on Singular 40-nm ∅ and 90-nm ∅ Red Beads and Singular 100-nm ∅ Green Singular Beadsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PSFz=M1 sincz-z1B2cosz-z0C2,
AIDz=M1 sincz-z1B2cosz-z0C2+Mg sincz-z2E2+L,

Metrics