Abstract

A hybrid structure combining square and hexagonal photonic crystal lattices is presented. This structure, which we refer to as heterostructure, offers the ability to tailor, optimize, and match the band structure of different lattices. The availability of heterostructures in photonic crystals opens a broad range of possibilities for optical device development. In particular, heterostructure photonic crystals are well suited for the application of optical beam splitting (Y coupler) and combining. Numerical experiments performed by use of the finite-difference time-domain method are shown to illustrate the device implemented in both unistructure and heterostructure lattices.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Prather, A. Sharkawy, S. Shouyuan, “Photonic crystals design and applications,” in Handbook of Nanoscience, Engineering, and Technology, S. E. Lyshevski, W. Goddard, D. Brenner, G. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002).
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
    [CrossRef]
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [CrossRef]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998).
    [CrossRef]
  5. M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
    [CrossRef]
  6. A. R. McGurn, “Photonic crystal circuits: a theory for two- and three-dimensional networks,” Phys. Rev. B 61, 13235–13249 (2000).
    [CrossRef]
  7. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
    [CrossRef]
  8. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
    [CrossRef]
  9. A. Mekis, J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861–865 (2001).
    [CrossRef]
  10. S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [CrossRef]
  11. M. Loncar, T. Doll, J. Vuckovic, A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
    [CrossRef]
  12. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef] [PubMed]
  13. T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
    [CrossRef]
  14. R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, F. P. H. V. Beckum, “Numerical studies of 2D photonic crystals: waveguides, coupling between waveguides and filters,” Opt. Quantum Electron. 32, 947–961 (2000).
    [CrossRef]
  15. T. Sondergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000).
    [CrossRef]
  16. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [CrossRef]
  17. M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
    [CrossRef]
  18. M. Bayindir, B. Temmelkuran, E. Ozbay, “Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, 11855–11858 (2000).
    [CrossRef]
  19. M. Plihal, A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
    [CrossRef]
  20. K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).
  21. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method.2nd ed. (Artech House, Boston, Mass., 2000).
  22. A. Sharkawy, S. Shouyuan, D. W. Prather, “Optical networks on a chip using photonic bandgap materials,” in Wave-Optical Systems Engineering, F. Wyrowski, ed., Proc. SPIE4436, 179–189 (2001).
  23. D. W. Prather, A. Sharkawy, S. Shouyuan, R. A. Soref, “Electro-optical 2×2 switching in a photonic bandgap waveguided coupler,” in WDM and Photonic Switching Devices for Network Applications III, R. T. Chen, J. C. Chon, eds., Proc. SPIE4653, 45–48 (2002).
  24. A. Sharkawy, S. Shouyuan, J. Murakowski, D. W. Prather, “Analysis and applications of photonic crystals coupled waveguide theory,” in Photonic Bandgap Materials and Devices, A. Adibi, A. Scherer, eds., Proc. SPIE4655, 356–370 (2002).
  25. A. Sharkawy, S. Shi, D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001).
    [CrossRef]
  26. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  27. M. Bayindir, E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, 2247–2250 (2000).
    [CrossRef]
  28. G. Parker, M. Charlton, “Photonic crystals,” Phys. World 13, 29–34 (2000).
  29. N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
    [CrossRef]
  30. S. Romanov, H. Yates, M. Pemble, R. De la Rue, “Opal-based photonic crystal with double photonic bandgap structure,” J. Phys. Condens. Matter, 12, 8221–8229 (2000).
    [CrossRef]
  31. V. Karathanos, A. Modinos, N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
    [CrossRef]
  32. F. Qiao, C. Zhang, J. Wan, J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
    [CrossRef]
  33. S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001).
    [CrossRef]
  34. J. N. Winn, S. Fan, J. D. Joannopoulos, “Intraband transitions in photonic crystals,” Phys. Rev. B 59, 1551–1554 (1999).
    [CrossRef]
  35. C. Zhang, F. Qiao, J. Wan, J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87, 3174–3176 (2000).
    [CrossRef]
  36. L.-L. Lin, Z.-Y. Li, “Interface states in photonic crystals,” Phys. Rev. B 63, 333101–333104 (2001).
    [CrossRef]
  37. F. R. Mendieta, P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999).
    [CrossRef]
  38. A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
    [CrossRef]

2002 (1)

A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

2001 (4)

A. Sharkawy, S. Shi, D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001).
[CrossRef]

A. Mekis, J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861–865 (2001).
[CrossRef]

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001).
[CrossRef]

L.-L. Lin, Z.-Y. Li, “Interface states in photonic crystals,” Phys. Rev. B 63, 333101–333104 (2001).
[CrossRef]

2000 (16)

C. Zhang, F. Qiao, J. Wan, J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87, 3174–3176 (2000).
[CrossRef]

F. Qiao, C. Zhang, J. Wan, J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

M. Loncar, T. Doll, J. Vuckovic, A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

A. R. McGurn, “Photonic crystal circuits: a theory for two- and three-dimensional networks,” Phys. Rev. B 61, 13235–13249 (2000).
[CrossRef]

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, F. P. H. V. Beckum, “Numerical studies of 2D photonic crystals: waveguides, coupling between waveguides and filters,” Opt. Quantum Electron. 32, 947–961 (2000).
[CrossRef]

T. Sondergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

M. Bayindir, B. Temmelkuran, E. Ozbay, “Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, 11855–11858 (2000).
[CrossRef]

M. Bayindir, E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, 2247–2250 (2000).
[CrossRef]

G. Parker, M. Charlton, “Photonic crystals,” Phys. World 13, 29–34 (2000).

S. Romanov, H. Yates, M. Pemble, R. De la Rue, “Opal-based photonic crystal with double photonic bandgap structure,” J. Phys. Condens. Matter, 12, 8221–8229 (2000).
[CrossRef]

1999 (5)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

J. N. Winn, S. Fan, J. D. Joannopoulos, “Intraband transitions in photonic crystals,” Phys. Rev. B 59, 1551–1554 (1999).
[CrossRef]

F. R. Mendieta, P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999).
[CrossRef]

1998 (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998).
[CrossRef]

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

1994 (2)

V. Karathanos, A. Modinos, N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1991 (1)

M. Plihal, A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

Adibi, A.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

Bae, J. S.

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001).
[CrossRef]

Bayindir, M.

M. Bayindir, B. Temmelkuran, E. Ozbay, “Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, 11855–11858 (2000).
[CrossRef]

M. Bayindir, E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, 2247–2250 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

Beckum, F. P. H. V.

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, F. P. H. V. Beckum, “Numerical studies of 2D photonic crystals: waveguides, coupling between waveguides and filters,” Opt. Quantum Electron. 32, 947–961 (2000).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Bjarklev, A.

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

Broeng, J.

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

Charlton, M.

G. Parker, M. Charlton, “Photonic crystals,” Phys. World 13, 29–34 (2000).

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Chutinan, A.

A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

De la Rue, R.

S. Romanov, H. Yates, M. Pemble, R. De la Rue, “Opal-based photonic crystal with double photonic bandgap structure,” J. Phys. Condens. Matter, 12, 8221–8229 (2000).
[CrossRef]

Doll, T.

Dridi, K. H.

T. Sondergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

Erland, J.

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

J. N. Winn, S. Fan, J. D. Joannopoulos, “Intraband transitions in photonic crystals,” Phys. Rev. B 59, 1551–1554 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Groesen, E. V.

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, F. P. H. V. Beckum, “Numerical studies of 2D photonic crystals: waveguides, coupling between waveguides and filters,” Opt. Quantum Electron. 32, 947–961 (2000).
[CrossRef]

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method.2nd ed. (Artech House, Boston, Mass., 2000).

Halevi, P.

F. R. Mendieta, P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999).
[CrossRef]

Hoekstra, H. J. W. M.

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, F. P. H. V. Beckum, “Numerical studies of 2D photonic crystals: waveguides, coupling between waveguides and filters,” Opt. Quantum Electron. 32, 947–961 (2000).
[CrossRef]

Joannopoulos, J. D.

A. Mekis, J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861–865 (2001).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

J. N. Winn, S. Fan, J. D. Joannopoulos, “Intraband transitions in photonic crystals,” Phys. Rev. B 59, 1551–1554 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Karathanos, V.

V. Karathanos, A. Modinos, N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998).
[CrossRef]

Kosaka, H.

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998).
[CrossRef]

Kristensen, M.

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

Kunz, K. S.

K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Lee, R. K.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

Li, Z.-Y.

L.-L. Lin, Z.-Y. Li, “Interface states in photonic crystals,” Phys. Rev. B 63, 333101–333104 (2001).
[CrossRef]

Lin, L.-L.

L.-L. Lin, Z.-Y. Li, “Interface states in photonic crystals,” Phys. Rev. B 63, 333101–333104 (2001).
[CrossRef]

Loncar, M.

Luebbers, R. J.

K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).

Maradudin, A. A.

M. Plihal, A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

McGurn, A. R.

A. R. McGurn, “Photonic crystal circuits: a theory for two- and three-dimensional networks,” Phys. Rev. B 61, 13235–13249 (2000).
[CrossRef]

Mekis, A.

A. Mekis, J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861–865 (2001).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Mendieta, F. R.

F. R. Mendieta, P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999).
[CrossRef]

Miyazaki, H.

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001).
[CrossRef]

Mizuno, K.

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001).
[CrossRef]

Modinos, A.

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

V. Karathanos, A. Modinos, N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
[CrossRef]

Murakowski, J.

A. Sharkawy, S. Shouyuan, J. Murakowski, D. W. Prather, “Analysis and applications of photonic crystals coupled waveguide theory,” in Photonic Bandgap Materials and Devices, A. Adibi, A. Scherer, eds., Proc. SPIE4655, 356–370 (2002).

Noda, S.

A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998).
[CrossRef]

Ohtaka, K.

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001).
[CrossRef]

Okano, M.

A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Ozbay, E.

M. Bayindir, E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, 2247–2250 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

M. Bayindir, B. Temmelkuran, E. Ozbay, “Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, 11855–11858 (2000).
[CrossRef]

Parker, G.

G. Parker, M. Charlton, “Photonic crystals,” Phys. World 13, 29–34 (2000).

Pemble, M.

S. Romanov, H. Yates, M. Pemble, R. De la Rue, “Opal-based photonic crystal with double photonic bandgap structure,” J. Phys. Condens. Matter, 12, 8221–8229 (2000).
[CrossRef]

Plihal, M.

M. Plihal, A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

Prather, D. W.

A. Sharkawy, S. Shi, D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001).
[CrossRef]

A. Sharkawy, S. Shouyuan, D. W. Prather, “Optical networks on a chip using photonic bandgap materials,” in Wave-Optical Systems Engineering, F. Wyrowski, ed., Proc. SPIE4436, 179–189 (2001).

D. W. Prather, A. Sharkawy, S. Shouyuan, “Photonic crystals design and applications,” in Handbook of Nanoscience, Engineering, and Technology, S. E. Lyshevski, W. Goddard, D. Brenner, G. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002).

A. Sharkawy, S. Shouyuan, J. Murakowski, D. W. Prather, “Analysis and applications of photonic crystals coupled waveguide theory,” in Photonic Bandgap Materials and Devices, A. Adibi, A. Scherer, eds., Proc. SPIE4655, 356–370 (2002).

D. W. Prather, A. Sharkawy, S. Shouyuan, R. A. Soref, “Electro-optical 2×2 switching in a photonic bandgap waveguided coupler,” in WDM and Photonic Switching Devices for Network Applications III, R. T. Chen, J. C. Chon, eds., Proc. SPIE4653, 45–48 (2002).

Qiao, F.

F. Qiao, C. Zhang, J. Wan, J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

C. Zhang, F. Qiao, J. Wan, J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87, 3174–3176 (2000).
[CrossRef]

Ridder, R. M. D.

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, F. P. H. V. Beckum, “Numerical studies of 2D photonic crystals: waveguides, coupling between waveguides and filters,” Opt. Quantum Electron. 32, 947–961 (2000).
[CrossRef]

Romanov, S.

S. Romanov, H. Yates, M. Pemble, R. De la Rue, “Opal-based photonic crystal with double photonic bandgap structure,” J. Phys. Condens. Matter, 12, 8221–8229 (2000).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998).
[CrossRef]

Scherer, A.

Segawa, Y.

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001).
[CrossRef]

Sharkawy, A.

A. Sharkawy, S. Shi, D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001).
[CrossRef]

A. Sharkawy, S. Shouyuan, D. W. Prather, “Optical networks on a chip using photonic bandgap materials,” in Wave-Optical Systems Engineering, F. Wyrowski, ed., Proc. SPIE4436, 179–189 (2001).

D. W. Prather, A. Sharkawy, S. Shouyuan, “Photonic crystals design and applications,” in Handbook of Nanoscience, Engineering, and Technology, S. E. Lyshevski, W. Goddard, D. Brenner, G. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002).

D. W. Prather, A. Sharkawy, S. Shouyuan, R. A. Soref, “Electro-optical 2×2 switching in a photonic bandgap waveguided coupler,” in WDM and Photonic Switching Devices for Network Applications III, R. T. Chen, J. C. Chon, eds., Proc. SPIE4653, 45–48 (2002).

A. Sharkawy, S. Shouyuan, J. Murakowski, D. W. Prather, “Analysis and applications of photonic crystals coupled waveguide theory,” in Photonic Bandgap Materials and Devices, A. Adibi, A. Scherer, eds., Proc. SPIE4655, 356–370 (2002).

Shi, S.

Shouyuan, S.

A. Sharkawy, S. Shouyuan, D. W. Prather, “Optical networks on a chip using photonic bandgap materials,” in Wave-Optical Systems Engineering, F. Wyrowski, ed., Proc. SPIE4436, 179–189 (2001).

D. W. Prather, A. Sharkawy, S. Shouyuan, “Photonic crystals design and applications,” in Handbook of Nanoscience, Engineering, and Technology, S. E. Lyshevski, W. Goddard, D. Brenner, G. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002).

A. Sharkawy, S. Shouyuan, J. Murakowski, D. W. Prather, “Analysis and applications of photonic crystals coupled waveguide theory,” in Photonic Bandgap Materials and Devices, A. Adibi, A. Scherer, eds., Proc. SPIE4655, 356–370 (2002).

D. W. Prather, A. Sharkawy, S. Shouyuan, R. A. Soref, “Electro-optical 2×2 switching in a photonic bandgap waveguided coupler,” in WDM and Photonic Switching Devices for Network Applications III, R. T. Chen, J. C. Chon, eds., Proc. SPIE4653, 45–48 (2002).

Sondergaard, T.

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

T. Sondergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

Soref, R. A.

D. W. Prather, A. Sharkawy, S. Shouyuan, R. A. Soref, “Electro-optical 2×2 switching in a photonic bandgap waveguided coupler,” in WDM and Photonic Switching Devices for Network Applications III, R. T. Chen, J. C. Chon, eds., Proc. SPIE4653, 45–48 (2002).

Stefanou, N.

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

V. Karathanos, A. Modinos, N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
[CrossRef]

Stoffer, R.

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, F. P. H. V. Beckum, “Numerical studies of 2D photonic crystals: waveguides, coupling between waveguides and filters,” Opt. Quantum Electron. 32, 947–961 (2000).
[CrossRef]

Taflove, A.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method.2nd ed. (Artech House, Boston, Mass., 2000).

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998).
[CrossRef]

Temelkuran, B.

M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

Temmelkuran, B.

M. Bayindir, B. Temmelkuran, E. Ozbay, “Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, 11855–11858 (2000).
[CrossRef]

Tokushima, M.

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Tomita, A.

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Vuckovic, J.

Wan, J.

C. Zhang, F. Qiao, J. Wan, J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87, 3174–3176 (2000).
[CrossRef]

F. Qiao, C. Zhang, J. Wan, J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

Winn, J. N.

J. N. Winn, S. Fan, J. D. Joannopoulos, “Intraband transitions in photonic crystals,” Phys. Rev. B 59, 1551–1554 (1999).
[CrossRef]

Xu, Y.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

Yamada, H.

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Yamaguchi, S.

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001).
[CrossRef]

Yannopapas, V.

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Yano, S.

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001).
[CrossRef]

Yariv, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

Yates, H.

S. Romanov, H. Yates, M. Pemble, R. De la Rue, “Opal-based photonic crystal with double photonic bandgap structure,” J. Phys. Condens. Matter, 12, 8221–8229 (2000).
[CrossRef]

Zhang, C.

F. Qiao, C. Zhang, J. Wan, J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

C. Zhang, F. Qiao, J. Wan, J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87, 3174–3176 (2000).
[CrossRef]

Zi, J.

C. Zhang, F. Qiao, J. Wan, J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87, 3174–3176 (2000).
[CrossRef]

F. Qiao, C. Zhang, J. Wan, J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

F. Qiao, C. Zhang, J. Wan, J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

Comput. Phys. Commun. (1)

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Electron. Lett. (1)

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

J. Appl. Phys. (1)

C. Zhang, F. Qiao, J. Wan, J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87, 3174–3176 (2000).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Lightwave Technol. (3)

J. Phys. Condens. Matter (2)

S. Romanov, H. Yates, M. Pemble, R. De la Rue, “Opal-based photonic crystal with double photonic bandgap structure,” J. Phys. Condens. Matter, 12, 8221–8229 (2000).
[CrossRef]

V. Karathanos, A. Modinos, N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
[CrossRef]

Opt. Quantum Electron. (1)

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, F. P. H. V. Beckum, “Numerical studies of 2D photonic crystals: waveguides, coupling between waveguides and filters,” Opt. Quantum Electron. 32, 947–961 (2000).
[CrossRef]

Phys. Rev. B (11)

T. Sondergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

A. R. McGurn, “Photonic crystal circuits: a theory for two- and three-dimensional networks,” Phys. Rev. B 61, 13235–13249 (2000).
[CrossRef]

M. Bayindir, B. Temmelkuran, E. Ozbay, “Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, 11855–11858 (2000).
[CrossRef]

M. Plihal, A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Phys. Rev. B 63, 1533161–1533164 (2001).
[CrossRef]

J. N. Winn, S. Fan, J. D. Joannopoulos, “Intraband transitions in photonic crystals,” Phys. Rev. B 59, 1551–1554 (1999).
[CrossRef]

M. Bayindir, E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, 2247–2250 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

L.-L. Lin, Z.-Y. Li, “Interface states in photonic crystals,” Phys. Rev. B 63, 333101–333104 (2001).
[CrossRef]

F. R. Mendieta, P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999).
[CrossRef]

Phys. Rev. B. (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B. 58, 10096–10099 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Phys. World (1)

G. Parker, M. Charlton, “Photonic crystals,” Phys. World 13, 29–34 (2000).

Other (6)

D. W. Prather, A. Sharkawy, S. Shouyuan, “Photonic crystals design and applications,” in Handbook of Nanoscience, Engineering, and Technology, S. E. Lyshevski, W. Goddard, D. Brenner, G. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002).

K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method.2nd ed. (Artech House, Boston, Mass., 2000).

A. Sharkawy, S. Shouyuan, D. W. Prather, “Optical networks on a chip using photonic bandgap materials,” in Wave-Optical Systems Engineering, F. Wyrowski, ed., Proc. SPIE4436, 179–189 (2001).

D. W. Prather, A. Sharkawy, S. Shouyuan, R. A. Soref, “Electro-optical 2×2 switching in a photonic bandgap waveguided coupler,” in WDM and Photonic Switching Devices for Network Applications III, R. T. Chen, J. C. Chon, eds., Proc. SPIE4653, 45–48 (2002).

A. Sharkawy, S. Shouyuan, J. Murakowski, D. W. Prather, “Analysis and applications of photonic crystals coupled waveguide theory,” in Photonic Bandgap Materials and Devices, A. Adibi, A. Scherer, eds., Proc. SPIE4655, 356–370 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Beam splitter built in a square PhC lattice (unistructure). (b) Snapshot of FDTD simulation of the structure shown in (a). Transmission efficiency through each waveguide branch is 25% after the splitting section with total throughput efficiency of 50%. PhC structure with (r/ a = 0.2 or a = 543 nm, r = 109 nm) was analyzed for a bandgap between (0.25 < a/λ < 0.44 or 1.234 µm < λ < 2.172 µm).

Fig. 2
Fig. 2

Band diagram of hexagonal PhC lattice (r/ a = 0.2) with E g1 and square PhC lattice (r/ a = 0.2) with E g2. As both lattices are brought together to form heterostructure PhC band-edge discontinuities, ΔE diel and ΔE air start to appear at both the dielectric band and the air band, respectively.

Fig. 3
Fig. 3

(a) Transmission spectra of a square PhC lattice [dashed curve (r/ a = 0.2 or r = 109 nm, a = 543 nm)] with a bandgap between (0.25 < a/λ < 0.44 or 1.234 µm < λ < 2.172 µm) along the Γ-X direction (θ = 90°), overlapped with the transmission spectra of a hexagonal PhC lattice [solid curve (r/ a = 0.3 or r = 163 nm, a = 543 nm)] with a bandgap between (0.42 < a/λ < 0.543 or 1.0 µm < λ < 1.292 µm), (0.22 < a/λ < 0.32 or 1.696 µm < λ < 2.468 µm), (0.64 < a/λ < 0.75 or 0.72 µm < λ < 0.85 µm) along the Γ-K direction (θ = 90°) for TM polarization. (b) Transmission spectra of a heterostructure PhC with a bandgap between (0.2 < a/λ < 0.543 or 1.0 µm < λ < λ < 2.7 µm) for TM polarization along (θ = 90°). (c) Transmission spectra of heterostructure PhC with a bandgap between (0.203 < a/λ < 0.57 or 0.95 µm < λ < 2.67 µm) for TM polarization along (θ = 60°). (d) Omnidirectional heterostructure bandgap (1.03 µm < λ < 2.615 µm).

Fig. 4
Fig. 4

Varying the radius of the silicon pillars used to form the hexagonal lattice between 0.1 < r/ a < 0.3 while maintaining the radius of the silicon pillars used to form the square lattice at r/ a = 0.2 allowed us to minimize and hence optimize the discontinuities in the dielectric band ΔE diel = 7.0 nm and in the air band ΔE air = 4.0 nm. We obtained the plot by measuring the bandgap along the Γ-K direction of the hexagonal lattice for TM polarization and comparing it with the bandgap along the Γ-X direction of the square lattice for TM polarization. The lattice constant was fixed at a = 543 nm throughout the calculations.

Fig. 5
Fig. 5

Heterostructure PhC can be used to achieve bandgap matching between a square PhC with (r = 109 nm) and a hexagonal PhC with (r = 120 nm), both with a lattice constant (a = 543 nm). (a) Bandgap matching for θ = 90° (normal incidence). (b) Bandgap matching for θ = 60°. (c) Omnidirectional bandgap matching (1.2856 µm < λ < 2.01 µm).

Fig. 6
Fig. 6

(a) Beam splitter (Y coupler) formed in a heterostructure PhC when one column of dielectric rods are removed to form a waveguide in the square part of the crystal and a diagonal row of rods are removed on both sides of the waveguide in the hexagonal part to form a splitter section. (b) A snapshot of FDTD simulation of the structure shown in (a). Transmission efficiency on each waveguide branch after the splitting section is 45% with a total of throughput efficiency of 90%.

Fig. 7
Fig. 7

(a) Four-way optical beam splitter by use of a heterostructure PhC lattice. (b) An optical beam splitter and combiner by use of a heterostructure PhC lattice.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔEg=Eg1-Eg2.

Metrics