Abstract

Transient bending waves in a rotating hard disk is measured by means of pulsed TV holography. The speckle motion in the detector plane caused by the rotation is compensated for in the interference phase evaluation. The technique is all electronic and needs no image derotator.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).
  2. T. Kreis, Holographic Interferometry, Principles and Methods (Akademie Verlag, Berlin, 1996)
  3. K. A. Stetson, “The use of an image derotator in hologram interferometry and speckle photography of rotating objects,” Exp. Mech. 18, 67–73 (1978).
    [CrossRef]
  4. M.-A. Beeck, “Pulsed holographic vibration analysis on high-speed rotating objects: fringe formation, recording techniques, and practical applications,” Opt. Eng. 31, 553–561 (1992).
    [CrossRef]
  5. S. Schedin, P. Gren, “Phase evaluation and speckle averaging in pulsed television holography,” Appl. Opt. 36, 3941–3947 (1997).
    [CrossRef] [PubMed]
  6. G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-tv-holography,” Opt. Laser Eng. 26, 199–219 (1997).
    [CrossRef]
  7. C. Pérez-Lópes, F. Mendoza Santoyo, G. Pedrini, S. Schedin, H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Opt. Photon. News 13 (Suppl.), February2002, pp. 2–6.
  8. P. Gren, “Pulsed tv holography combined with digital speckle photography restores lost interference phase,” Appl. Opt. 40, 2304–2309 (2001).
    [CrossRef]
  9. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  10. K.-E. Fällström, P. Gren, R. Mattsson, “Determination of paper stiffness and anisotropy from recorded bending waves in paper subjected to tensile forces,” NDT&E International 35, 465–472 (2002).
    [CrossRef]

2002 (2)

C. Pérez-Lópes, F. Mendoza Santoyo, G. Pedrini, S. Schedin, H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Opt. Photon. News 13 (Suppl.), February2002, pp. 2–6.

K.-E. Fällström, P. Gren, R. Mattsson, “Determination of paper stiffness and anisotropy from recorded bending waves in paper subjected to tensile forces,” NDT&E International 35, 465–472 (2002).
[CrossRef]

2001 (1)

1997 (2)

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-tv-holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

S. Schedin, P. Gren, “Phase evaluation and speckle averaging in pulsed television holography,” Appl. Opt. 36, 3941–3947 (1997).
[CrossRef] [PubMed]

1992 (1)

M.-A. Beeck, “Pulsed holographic vibration analysis on high-speed rotating objects: fringe formation, recording techniques, and practical applications,” Opt. Eng. 31, 553–561 (1992).
[CrossRef]

1982 (1)

1978 (1)

K. A. Stetson, “The use of an image derotator in hologram interferometry and speckle photography of rotating objects,” Exp. Mech. 18, 67–73 (1978).
[CrossRef]

Beeck, M.-A.

M.-A. Beeck, “Pulsed holographic vibration analysis on high-speed rotating objects: fringe formation, recording techniques, and practical applications,” Opt. Eng. 31, 553–561 (1992).
[CrossRef]

Fällström, K.-E.

K.-E. Fällström, P. Gren, R. Mattsson, “Determination of paper stiffness and anisotropy from recorded bending waves in paper subjected to tensile forces,” NDT&E International 35, 465–472 (2002).
[CrossRef]

Gren, P.

Ina, H.

Kobayashi, S.

Kreis, T.

T. Kreis, Holographic Interferometry, Principles and Methods (Akademie Verlag, Berlin, 1996)

Mattsson, R.

K.-E. Fällström, P. Gren, R. Mattsson, “Determination of paper stiffness and anisotropy from recorded bending waves in paper subjected to tensile forces,” NDT&E International 35, 465–472 (2002).
[CrossRef]

Mendoza Santoyo, F.

C. Pérez-Lópes, F. Mendoza Santoyo, G. Pedrini, S. Schedin, H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Opt. Photon. News 13 (Suppl.), February2002, pp. 2–6.

Pedrini, G.

C. Pérez-Lópes, F. Mendoza Santoyo, G. Pedrini, S. Schedin, H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Opt. Photon. News 13 (Suppl.), February2002, pp. 2–6.

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-tv-holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Pérez-Lópes, C.

C. Pérez-Lópes, F. Mendoza Santoyo, G. Pedrini, S. Schedin, H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Opt. Photon. News 13 (Suppl.), February2002, pp. 2–6.

Schedin, S.

C. Pérez-Lópes, F. Mendoza Santoyo, G. Pedrini, S. Schedin, H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Opt. Photon. News 13 (Suppl.), February2002, pp. 2–6.

S. Schedin, P. Gren, “Phase evaluation and speckle averaging in pulsed television holography,” Appl. Opt. 36, 3941–3947 (1997).
[CrossRef] [PubMed]

Stetson, K. A.

K. A. Stetson, “The use of an image derotator in hologram interferometry and speckle photography of rotating objects,” Exp. Mech. 18, 67–73 (1978).
[CrossRef]

Takeda, M.

Tiziani, H. J.

C. Pérez-Lópes, F. Mendoza Santoyo, G. Pedrini, S. Schedin, H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Opt. Photon. News 13 (Suppl.), February2002, pp. 2–6.

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-tv-holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

Zou, Y.

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-tv-holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Appl. Opt. (2)

Exp. Mech. (1)

K. A. Stetson, “The use of an image derotator in hologram interferometry and speckle photography of rotating objects,” Exp. Mech. 18, 67–73 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

NDT&E International (1)

K.-E. Fällström, P. Gren, R. Mattsson, “Determination of paper stiffness and anisotropy from recorded bending waves in paper subjected to tensile forces,” NDT&E International 35, 465–472 (2002).
[CrossRef]

Opt. Eng. (1)

M.-A. Beeck, “Pulsed holographic vibration analysis on high-speed rotating objects: fringe formation, recording techniques, and practical applications,” Opt. Eng. 31, 553–561 (1992).
[CrossRef]

Opt. Laser Eng. (1)

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-tv-holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Opt. Photon. News (1)

C. Pérez-Lópes, F. Mendoza Santoyo, G. Pedrini, S. Schedin, H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Opt. Photon. News 13 (Suppl.), February2002, pp. 2–6.

Other (2)

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

T. Kreis, Holographic Interferometry, Principles and Methods (Akademie Verlag, Berlin, 1996)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. YAG, Twin-cavity, injection-seeded, pulsed Nd:YAG laser system. BS1–BS3, beam splitters; M1–M3, mirrors; HD, hard disk; L, lens system; O, object beam; R, reference beam; CCD, CCD camera.

Fig. 2
Fig. 2

(a) White-light image of the hard disk. (b) Wrapped phase map 20 µs after laser impact without compensation for the rotation. The impact point is positioned 3 mm above the top of the image and 5 mm from the rim. (c) Phase map 20 µs after laser impact now compensated for the rotation.

Fig. 3
Fig. 3

Development of bending waves in a rotating hard disk generated by a laser impact. (a) 10 µs after laser impact, (b) 20 µs after laser impact, (c) 30 µs after laser impact.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I=|O+R|2=|O|2+|R|2+OR+OR.

Metrics