Abstract

We theoretically derive the shape of the Brillouin gain spectrum, that is, the Brillouin backscattered-light power spectrum, produced in an optical fiber under conditions of a strain distribution that changes linearly with a constant slope. The modeled measurement system is an optical time-domain reflectometer-type strain sensor system. The linear strain distribution is one of the fundamental distributions and is produced in, for example, a beam to which a concentrated load is applied. By analyzing a function that expresses the shape of the derived Brillouin gain spectrum, we show that the strain calculated from the frequency at which the spectrum has a peak value coincides with that at the center of the effective pulsed light. In addition, the peak value and the full width at half-maximum of the Brillouin gain spectrum are both influenced by the strain difference between the two ends of the effective pulse. We investigate this influence in detail and obtain the relationship between strain difference and strain measurement error.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
    [CrossRef]
  2. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
    [CrossRef]
  3. M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
    [CrossRef] [PubMed]
  4. H. Izumita, T. Sato, M. Tateda, Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photon. Technol. Lett. 8, 1674–1676 (1996).
    [CrossRef]
  5. S. M. Maughan, H. H. Kee, T. P. Newson, “A calibrated 27-km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin backscattered power,” IEEE Photon. Technol. Lett. 13, 511–513 (2001).
    [CrossRef]
  6. X. Bao, D. J. Webb, D. A. Jackson, “22-km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett. 18, 552–554 (1993).
    [CrossRef] [PubMed]
  7. K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).
  8. N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).
  9. M. DeMerchant, A. Brown, X. Bao, T. Bremner, “Structural monitoring by use of a Brillouin distributed sensor,” Appl. Opt. 38, 2755–2759 (1999).
    [CrossRef]
  10. L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structure using distributed Brillouin fibre sensing,” in 13th International Conference on Optical Fiber Sensors, K. Hotate, B. Kim, eds., Proc. SPIE3746, 345–348 (1999).
  11. H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete pipes,” IEICE Trans. Electron. E85-C, 945–951 (2002).
  12. K. Shiba, H. Kumagai, K. Watanabe, H. Naruse, H. Ohno, “Fiber optic distributed sensor for monitoring of concrete structures,” in Proceedings of the 3rd International Workshop on Structural Health Monitoring: The Demands and Challenges, F.-K. Chang, ed. (CRC Press, New York, 2001), pp. 459–468.
  13. H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).
  14. X. Bao, A. Brown, M. DeMerchant, J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24, 510–512 (1999).
    [CrossRef]
  15. A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.
  16. H. Naruse, M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38, 6516–6521 (1999).
    [CrossRef]
  17. H. Naruse, M. Tateda, “Optimum temporal pulse shape of launched light for optical time domain reflectometry type sensors using Brillouin backscattering,” Opt. Rev. 8, 126–132 (2001).
    [CrossRef]
  18. T. Horiguchi, T. Kurashima, M. Tateda, K. Ishihara, Y. Wakui, “Brillouin characterization of fiber strain in bent slot-type optical-fiber cables,” J. Lightwave Technol. 10, 1196–1201 (1992).
    [CrossRef]
  19. A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, “Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method,” J. Lightwave Technol. 17, 1179–1183 (1999).
    [CrossRef]
  20. T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Trans. Electron. J74-c-II, 467–476 (1991).
  21. C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2955 (1966).
    [CrossRef]
  22. T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
    [CrossRef] [PubMed]
  23. K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
    [CrossRef]
  24. K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
    [CrossRef] [PubMed]
  25. T. Horiguchi, T. Kurashima, Y. Koyamada, “1 m spatial resolution measurement of distributed Brillouin frequency shift in single-mode fibers,” in Symposium on Optical Fiber Measurements, NIST Spec. Publ.864, 73–76 (1994).

2002 (1)

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete pipes,” IEICE Trans. Electron. E85-C, 945–951 (2002).

2001 (2)

H. Naruse, M. Tateda, “Optimum temporal pulse shape of launched light for optical time domain reflectometry type sensors using Brillouin backscattering,” Opt. Rev. 8, 126–132 (2001).
[CrossRef]

S. M. Maughan, H. H. Kee, T. P. Newson, “A calibrated 27-km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin backscattered power,” IEEE Photon. Technol. Lett. 13, 511–513 (2001).
[CrossRef]

2000 (3)

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

1999 (4)

1997 (1)

1996 (2)

M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef] [PubMed]

H. Izumita, T. Sato, M. Tateda, Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photon. Technol. Lett. 8, 1674–1676 (1996).
[CrossRef]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

1994 (1)

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

1993 (2)

1992 (1)

T. Horiguchi, T. Kurashima, M. Tateda, K. Ishihara, Y. Wakui, “Brillouin characterization of fiber strain in bent slot-type optical-fiber cables,” J. Lightwave Technol. 10, 1196–1201 (1992).
[CrossRef]

1991 (1)

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Trans. Electron. J74-c-II, 467–476 (1991).

1989 (1)

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

1966 (1)

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2955 (1966).
[CrossRef]

Bao, X.

Bremner, T.

Bremner, T. W.

Brown, A.

Brown, A. W.

Dardel, B.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structure using distributed Brillouin fibre sensing,” in 13th International Conference on Optical Fiber Sensors, K. Hotate, B. Kim, eds., Proc. SPIE3746, 345–348 (1999).

DeMerchant, M.

DeMerchant, M. D.

Facchini, M.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structure using distributed Brillouin fibre sensing,” in 13th International Conference on Optical Fiber Sensors, K. Hotate, B. Kim, eds., Proc. SPIE3746, 345–348 (1999).

Farhadiroushan, M.

Fellay, A.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structure using distributed Brillouin fibre sensing,” in 13th International Conference on Optical Fiber Sensors, K. Hotate, B. Kim, eds., Proc. SPIE3746, 345–348 (1999).

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Handerek, V. A.

Hasegawa, T.

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
[CrossRef] [PubMed]

T. Horiguchi, T. Kurashima, M. Tateda, K. Ishihara, Y. Wakui, “Brillouin characterization of fiber strain in bent slot-type optical-fiber cables,” J. Lightwave Technol. 10, 1196–1201 (1992).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Trans. Electron. J74-c-II, 467–476 (1991).

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

T. Horiguchi, T. Kurashima, Y. Koyamada, “1 m spatial resolution measurement of distributed Brillouin frequency shift in single-mode fibers,” in Symposium on Optical Fiber Measurements, NIST Spec. Publ.864, 73–76 (1994).

Hotate, K.

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

Inaudi, D.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structure using distributed Brillouin fibre sensing,” in 13th International Conference on Optical Fiber Sensors, K. Hotate, B. Kim, eds., Proc. SPIE3746, 345–348 (1999).

Ishihara, K.

T. Horiguchi, T. Kurashima, M. Tateda, K. Ishihara, Y. Wakui, “Brillouin characterization of fiber strain in bent slot-type optical-fiber cables,” J. Lightwave Technol. 10, 1196–1201 (1992).
[CrossRef]

Izumita, H.

H. Izumita, T. Sato, M. Tateda, Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photon. Technol. Lett. 8, 1674–1676 (1996).
[CrossRef]

Jackson, D. A.

Kee, H. H.

S. M. Maughan, H. H. Kee, T. P. Newson, “A calibrated 27-km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin backscattered power,” IEEE Photon. Technol. Lett. 13, 511–513 (2001).
[CrossRef]

Kino, H.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

Koyamada, Y.

H. Izumita, T. Sato, M. Tateda, Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photon. Technol. Lett. 8, 1674–1676 (1996).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
[CrossRef] [PubMed]

T. Horiguchi, T. Kurashima, Y. Koyamada, “1 m spatial resolution measurement of distributed Brillouin frequency shift in single-mode fibers,” in Symposium on Optical Fiber Measurements, NIST Spec. Publ.864, 73–76 (1994).

Kumagai, H.

K. Shiba, H. Kumagai, K. Watanabe, H. Naruse, H. Ohno, “Fiber optic distributed sensor for monitoring of concrete structures,” in Proceedings of the 3rd International Workshop on Structural Health Monitoring: The Demands and Challenges, F.-K. Chang, ed. (CRC Press, New York, 2001), pp. 459–468.

Kurashima, T.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete pipes,” IEICE Trans. Electron. E85-C, 945–951 (2002).

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
[CrossRef] [PubMed]

T. Horiguchi, T. Kurashima, M. Tateda, K. Ishihara, Y. Wakui, “Brillouin characterization of fiber strain in bent slot-type optical-fiber cables,” J. Lightwave Technol. 10, 1196–1201 (1992).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Trans. Electron. J74-c-II, 467–476 (1991).

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

T. Horiguchi, T. Kurashima, Y. Koyamada, “1 m spatial resolution measurement of distributed Brillouin frequency shift in single-mode fibers,” in Symposium on Optical Fiber Measurements, NIST Spec. Publ.864, 73–76 (1994).

Kusakabe, Y.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete pipes,” IEICE Trans. Electron. E85-C, 945–951 (2002).

Masuda, J.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

Maughan, S. M.

S. M. Maughan, H. H. Kee, T. P. Newson, “A calibrated 27-km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin backscattered power,” IEEE Photon. Technol. Lett. 13, 511–513 (2001).
[CrossRef]

Nakamura, T.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

Naruse, H.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete pipes,” IEICE Trans. Electron. E85-C, 945–951 (2002).

H. Naruse, M. Tateda, “Optimum temporal pulse shape of launched light for optical time domain reflectometry type sensors using Brillouin backscattering,” Opt. Rev. 8, 126–132 (2001).
[CrossRef]

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

H. Naruse, M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38, 6516–6521 (1999).
[CrossRef]

K. Shiba, H. Kumagai, K. Watanabe, H. Naruse, H. Ohno, “Fiber optic distributed sensor for monitoring of concrete structures,” in Proceedings of the 3rd International Workshop on Structural Health Monitoring: The Demands and Challenges, F.-K. Chang, ed. (CRC Press, New York, 2001), pp. 459–468.

Newson, T. P.

S. M. Maughan, H. H. Kee, T. P. Newson, “A calibrated 27-km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin backscattered power,” IEEE Photon. Technol. Lett. 13, 511–513 (2001).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef] [PubMed]

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Nobiki, A.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete pipes,” IEICE Trans. Electron. E85-C, 945–951 (2002).

Ohno, H.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete pipes,” IEICE Trans. Electron. E85-C, 945–951 (2002).

K. Shiba, H. Kumagai, K. Watanabe, H. Naruse, H. Ohno, “Fiber optic distributed sensor for monitoring of concrete structures,” in Proceedings of the 3rd International Workshop on Structural Health Monitoring: The Demands and Challenges, F.-K. Chang, ed. (CRC Press, New York, 2001), pp. 459–468.

Parker, T. R.

Robert, P.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structure using distributed Brillouin fibre sensing,” in 13th International Conference on Optical Fiber Sensors, K. Hotate, B. Kim, eds., Proc. SPIE3746, 345–348 (1999).

Robert, P. A.

Rogers, A. J.

Sato, T.

H. Izumita, T. Sato, M. Tateda, Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photon. Technol. Lett. 8, 1674–1676 (1996).
[CrossRef]

Shiba, K.

K. Shiba, H. Kumagai, K. Watanabe, H. Naruse, H. Ohno, “Fiber optic distributed sensor for monitoring of concrete structures,” in Proceedings of the 3rd International Workshop on Structural Health Monitoring: The Demands and Challenges, F.-K. Chang, ed. (CRC Press, New York, 2001), pp. 459–468.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
[CrossRef] [PubMed]

Smith, J.

Tang, C. L.

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2955 (1966).
[CrossRef]

Tateda, M.

H. Naruse, M. Tateda, “Optimum temporal pulse shape of launched light for optical time domain reflectometry type sensors using Brillouin backscattering,” Opt. Rev. 8, 126–132 (2001).
[CrossRef]

H. Naruse, M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38, 6516–6521 (1999).
[CrossRef]

H. Izumita, T. Sato, M. Tateda, Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photon. Technol. Lett. 8, 1674–1676 (1996).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

T. Horiguchi, T. Kurashima, M. Tateda, K. Ishihara, Y. Wakui, “Brillouin characterization of fiber strain in bent slot-type optical-fiber cables,” J. Lightwave Technol. 10, 1196–1201 (1992).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Trans. Electron. J74-c-II, 467–476 (1991).

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef] [PubMed]

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structure using distributed Brillouin fibre sensing,” in 13th International Conference on Optical Fiber Sensors, K. Hotate, B. Kim, eds., Proc. SPIE3746, 345–348 (1999).

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Uchiyama, Y.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete pipes,” IEICE Trans. Electron. E85-C, 945–951 (2002).

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

Unno, S.

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

Wakui, Y.

T. Horiguchi, T. Kurashima, M. Tateda, K. Ishihara, Y. Wakui, “Brillouin characterization of fiber strain in bent slot-type optical-fiber cables,” J. Lightwave Technol. 10, 1196–1201 (1992).
[CrossRef]

Watanabe, K.

K. Shiba, H. Kumagai, K. Watanabe, H. Naruse, H. Ohno, “Fiber optic distributed sensor for monitoring of concrete structures,” in Proceedings of the 3rd International Workshop on Structural Health Monitoring: The Demands and Challenges, F.-K. Chang, ed. (CRC Press, New York, 2001), pp. 459–468.

Webb, D. J.

Yamaura, T.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

Yasue, N.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (3)

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

H. Izumita, T. Sato, M. Tateda, Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photon. Technol. Lett. 8, 1674–1676 (1996).
[CrossRef]

S. M. Maughan, H. H. Kee, T. P. Newson, “A calibrated 27-km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin backscattered power,” IEEE Photon. Technol. Lett. 13, 511–513 (2001).
[CrossRef]

IEICE Trans. Electron. (5)

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete pipes,” IEICE Trans. Electron. E85-C, 945–951 (2002).

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Trans. Electron. J74-c-II, 467–476 (1991).

J. Appl. Phys. (1)

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2955 (1966).
[CrossRef]

J. Lightwave Technol. (4)

K. Shimizu, T. Horiguchi, Y. Koyamada, T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

T. Horiguchi, T. Kurashima, M. Tateda, K. Ishihara, Y. Wakui, “Brillouin characterization of fiber strain in bent slot-type optical-fiber cables,” J. Lightwave Technol. 10, 1196–1201 (1992).
[CrossRef]

A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, “Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method,” J. Lightwave Technol. 17, 1179–1183 (1999).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Opt. Lett. (5)

Opt. Rev. (1)

H. Naruse, M. Tateda, “Optimum temporal pulse shape of launched light for optical time domain reflectometry type sensors using Brillouin backscattering,” Opt. Rev. 8, 126–132 (2001).
[CrossRef]

Other (4)

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

K. Shiba, H. Kumagai, K. Watanabe, H. Naruse, H. Ohno, “Fiber optic distributed sensor for monitoring of concrete structures,” in Proceedings of the 3rd International Workshop on Structural Health Monitoring: The Demands and Challenges, F.-K. Chang, ed. (CRC Press, New York, 2001), pp. 459–468.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structure using distributed Brillouin fibre sensing,” in 13th International Conference on Optical Fiber Sensors, K. Hotate, B. Kim, eds., Proc. SPIE3746, 345–348 (1999).

T. Horiguchi, T. Kurashima, Y. Koyamada, “1 m spatial resolution measurement of distributed Brillouin frequency shift in single-mode fibers,” in Symposium on Optical Fiber Measurements, NIST Spec. Publ.864, 73–76 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic configuration of the OTDR-type strain sensor system.

Fig. 2
Fig. 2

Effective pulse of the launched pulse light.

Fig. 3
Fig. 3

Beam models used in the analysis described in this paper. (a) Cantilever beam. (b) Simply supported beam.

Fig. 4
Fig. 4

Strain distribution produced in the beams. (a) Cantilever beams. (b) Simply supported beam.

Fig. 5
Fig. 5

Power spectra of Brillouin backscattered light for the strain difference between the two ends of the effective pulse.

Fig. 6
Fig. 6

Normalized peak value versus strain difference between the two ends of the effective pulse.

Fig. 7
Fig. 7

Normalized FWHM versus strain difference between the two ends of the effective pulse.

Fig. 8
Fig. 8

Dependence of strain-measurement error on the strain difference between the two ends of the effective pulse.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

dPBz, ν=gν, νBc2n pzdz exp-2αzz,
gν, νB=hw/22ν-νB2+w/22,
z=ct/2n,
piz=1zi-Δz/2zzi+Δz/20z<zi-Δz/2, z>zi+Δz/2.
νBε=νB0+Cεε,
h=const., w=const.,
Hiν=zi-Δz/2zi+Δz/2 gν, νBεzdz,
εz=Acz.
Ac=-WcyEI for a cantilever beam,
=Wcy4EI for a simply supported beam,
gν, νBεz=hα-βz2+1,
α=ν-νB0w/2,
β=AcCεw/2.
Gα=hβtan-1α-βzi+βΔz2-tan-1α-βzi-βΔz2.
Gmax=hΔzβΔz/2tan-1βΔz/2.
Gα=½ Gmax.
α=βzi±1+βΔz/221/2.
WG=21+βΔz/221/2.
GmaxhΔz1-βΔz/22,
WG2+βΔz/22,
Gmaxπh|β|,
WG|β|Δz.
GβαGββzi+d2Gββzidα2α-βzi22,
Δαβ=-2GNd2Gββzidα21/2,
d2Gββzidα2=-2hΔz1+βΔz/222.
ΔαβΔα0=1+βΔz/22.

Metrics