Abstract

A fiber-optic quasi-distributed strain sensors ring network has been designed based on a Mach-Zehnder optical paths interrogator. The optical paths matching for each sensor are discussed, and the optical power budgetary analysis is performed. The relation between the number of sensors and the intensity of the signals of the ring network is given for evaluation of the multiplexing capacity. Experimentally, a seven-sensor array ring network was realized under the condition of light source power 35 µW at 1310 nm, and the distribution strain test was also demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fiber-laser strain-sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–114 (1993).
    [CrossRef]
  2. G. Duck, M. M. Ohn, “Distributed Bragg grating sensing with a direct group-delay measurement technique,” Opt. Lett. 25, 90–92 (2000).
    [CrossRef]
  3. E. Sensfelder, J. Burck, H. J. Ache, “Characterization of a fiber-optic system for the distributed measurement of leakages in tanks and pipelines,” Appl. Spectrosc. 52, 1283–1298 (1998).
    [CrossRef]
  4. V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168, 95–102 (1999).
    [CrossRef]
  5. L. B. Yuan, F. Ansari, “White light interferometric fiber-optic distributed strain-sensing system,” Sens. Actuators A 63, 177–181 (1997).
    [CrossRef]
  6. L. B. Yuan, L. Zhou, “1 × N star coupler as a distributed fiber-optic strain sensor in a white-light interferometer,” Appl. Opt. 37, 4168–4172 (1998).
    [CrossRef]
  7. L. B. Yuan, L. Zhou, W. Jin, “Quasi-distributed strain sensing with white-light interferometry: a novel approach,” Opt. Lett. 25, 1074–1076 (2000).
    [CrossRef]
  8. J. M. Senior, S. E. Moss, S. D. Cusworth, “Wavelength division multiplexed optical point-sensor networks using injection laser diode sources,” Opt. Laser Technol. 28, 1–5 (1996).
    [CrossRef]
  9. W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974–980 (2001).
  10. S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of 1st In-ternational Conference on Optical Fiber SensorsIEE Conf. Pub.221, 132–1351983.
  11. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).
    [CrossRef]
  12. V. Gusmeroli, “High-performance serial array of coherence multiplexed interferometric fiber-optic sensors,” J. Lightwave Technol. 11, 1681–1686 (1993).
    [CrossRef]
  13. W. V. Sorin, D. M. Baney, “Multiplexing sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995).
    [CrossRef]
  14. D. Inaudi, S. Vurpillot, S. Lloret, “In-line coherence multiplexing of displacement sensors: a fiber optic extensometer,” in Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation, K. A. Murphy, D. R. Huston, eds., Proc. SPIE2178, 251–257 (1996).
  15. W. Jin, “Fiber optic gyroscope,” in Guided Wave Optical Sensors, W. Jin, Y. Liao, Z. Zhang, eds. (Science, Beijing, pp. 148–176 (1998).

2001

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974–980 (2001).

2000

1999

V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168, 95–102 (1999).
[CrossRef]

1998

1997

L. B. Yuan, F. Ansari, “White light interferometric fiber-optic distributed strain-sensing system,” Sens. Actuators A 63, 177–181 (1997).
[CrossRef]

1996

J. M. Senior, S. E. Moss, S. D. Cusworth, “Wavelength division multiplexed optical point-sensor networks using injection laser diode sources,” Opt. Laser Technol. 28, 1–5 (1996).
[CrossRef]

1995

W. V. Sorin, D. M. Baney, “Multiplexing sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995).
[CrossRef]

1993

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fiber-laser strain-sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–114 (1993).
[CrossRef]

V. Gusmeroli, “High-performance serial array of coherence multiplexed interferometric fiber-optic sensors,” J. Lightwave Technol. 11, 1681–1686 (1993).
[CrossRef]

1985

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).
[CrossRef]

Ache, H. J.

Al-Chalabi, S. A.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of 1st In-ternational Conference on Optical Fiber SensorsIEE Conf. Pub.221, 132–1351983.

Ansari, F.

L. B. Yuan, F. Ansari, “White light interferometric fiber-optic distributed strain-sensing system,” Sens. Actuators A 63, 177–181 (1997).
[CrossRef]

Baney, D. M.

W. V. Sorin, D. M. Baney, “Multiplexing sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995).
[CrossRef]

Brooks, J. L.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).
[CrossRef]

Burck, J.

Culshaw, B.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of 1st In-ternational Conference on Optical Fiber SensorsIEE Conf. Pub.221, 132–1351983.

Cusworth, S. D.

J. M. Senior, S. E. Moss, S. D. Cusworth, “Wavelength division multiplexed optical point-sensor networks using injection laser diode sources,” Opt. Laser Technol. 28, 1–5 (1996).
[CrossRef]

Davies, D. E. N.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of 1st In-ternational Conference on Optical Fiber SensorsIEE Conf. Pub.221, 132–1351983.

Duck, G.

Ecke, W.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974–980 (2001).

Graue, R.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974–980 (2001).

Gusmeroli, V.

V. Gusmeroli, “High-performance serial array of coherence multiplexed interferometric fiber-optic sensors,” J. Lightwave Technol. 11, 1681–1686 (1993).
[CrossRef]

Inaudi, D.

D. Inaudi, S. Vurpillot, S. Lloret, “In-line coherence multiplexing of displacement sensors: a fiber optic extensometer,” in Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation, K. A. Murphy, D. R. Huston, eds., Proc. SPIE2178, 251–257 (1996).

Jackson, D. A.

V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168, 95–102 (1999).
[CrossRef]

Jin, W.

L. B. Yuan, L. Zhou, W. Jin, “Quasi-distributed strain sensing with white-light interferometry: a novel approach,” Opt. Lett. 25, 1074–1076 (2000).
[CrossRef]

W. Jin, “Fiber optic gyroscope,” in Guided Wave Optical Sensors, W. Jin, Y. Liao, Z. Zhang, eds. (Science, Beijing, pp. 148–176 (1998).

Kersey, A. D.

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fiber-laser strain-sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–114 (1993).
[CrossRef]

Kim, B. Y.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).
[CrossRef]

Latka, I.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974–980 (2001).

Lecoeuche, V.

V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168, 95–102 (1999).
[CrossRef]

Lloret, S.

D. Inaudi, S. Vurpillot, S. Lloret, “In-line coherence multiplexing of displacement sensors: a fiber optic extensometer,” in Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation, K. A. Murphy, D. R. Huston, eds., Proc. SPIE2178, 251–257 (1996).

Morey, W. W.

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fiber-laser strain-sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–114 (1993).
[CrossRef]

Moss, S. E.

J. M. Senior, S. E. Moss, S. D. Cusworth, “Wavelength division multiplexed optical point-sensor networks using injection laser diode sources,” Opt. Laser Technol. 28, 1–5 (1996).
[CrossRef]

Ohn, M. M.

Pannell, C. N.

V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168, 95–102 (1999).
[CrossRef]

Reutlinger, A.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974–980 (2001).

Senior, J. M.

J. M. Senior, S. E. Moss, S. D. Cusworth, “Wavelength division multiplexed optical point-sensor networks using injection laser diode sources,” Opt. Laser Technol. 28, 1–5 (1996).
[CrossRef]

Sensfelder, E.

Shaw, H. J.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).
[CrossRef]

Sorin, W. V.

W. V. Sorin, D. M. Baney, “Multiplexing sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995).
[CrossRef]

Tur, M.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).
[CrossRef]

Vurpillot, S.

D. Inaudi, S. Vurpillot, S. Lloret, “In-line coherence multiplexing of displacement sensors: a fiber optic extensometer,” in Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation, K. A. Murphy, D. R. Huston, eds., Proc. SPIE2178, 251–257 (1996).

Webb, D. J.

V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168, 95–102 (1999).
[CrossRef]

Wentworth, R. H.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).
[CrossRef]

Willsch, R.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974–980 (2001).

Youngquist, R. C.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).
[CrossRef]

Yuan, L. B.

Zhou, L.

Appl. Opt.

Appl. Spectrosc.

Electron. Lett.

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fiber-laser strain-sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–114 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

W. V. Sorin, D. M. Baney, “Multiplexing sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995).
[CrossRef]

J. Lightwave Technol.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).
[CrossRef]

V. Gusmeroli, “High-performance serial array of coherence multiplexed interferometric fiber-optic sensors,” J. Lightwave Technol. 11, 1681–1686 (1993).
[CrossRef]

Meas. Sci. Technol.

W. Ecke, I. Latka, R. Willsch, A. Reutlinger, R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol. 12, 974–980 (2001).

Opt. Commun.

V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168, 95–102 (1999).
[CrossRef]

Opt. Laser Technol.

J. M. Senior, S. E. Moss, S. D. Cusworth, “Wavelength division multiplexed optical point-sensor networks using injection laser diode sources,” Opt. Laser Technol. 28, 1–5 (1996).
[CrossRef]

Opt. Lett.

Sens. Actuators A

L. B. Yuan, F. Ansari, “White light interferometric fiber-optic distributed strain-sensing system,” Sens. Actuators A 63, 177–181 (1997).
[CrossRef]

Other

D. Inaudi, S. Vurpillot, S. Lloret, “In-line coherence multiplexing of displacement sensors: a fiber optic extensometer,” in Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation, K. A. Murphy, D. R. Huston, eds., Proc. SPIE2178, 251–257 (1996).

W. Jin, “Fiber optic gyroscope,” in Guided Wave Optical Sensors, W. Jin, Y. Liao, Z. Zhang, eds. (Science, Beijing, pp. 148–176 (1998).

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of 1st In-ternational Conference on Optical Fiber SensorsIEE Conf. Pub.221, 132–1351983.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Fiber-optic, white-light interferometric strain sensors ring network configuration.

Fig. 2
Fig. 2

Optical path and reflective signals analysis diagram for the fiber-optic sensor l j,j+1.

Fig. 3
Fig. 3

Power fluxes of transmissive and reflective light signals in the sensors ring network.

Fig. 4
Fig. 4

Relation between the coefficients R, β, and T and R′, β′, and T′ in the connection part of the adjacent sensors.

Fig. 5
Fig. 5

Insertion coupling loss of GRIN lenses and prism versus the displacement X.

Fig. 6
Fig. 6

Simulation results of normalized output signals of a seven-sensor fiber-optic ring network.

Fig. 7
Fig. 7

Multiplexable comparison of cases 2 and 1.

Fig. 8
Fig. 8

Simulation results of relation between sensor number and its signal power level for a ring network system of a different size.

Fig. 9
Fig. 9

Fiber-optic sensors’ output signals power level.

Fig. 10
Fig. 10

Distributed strain measurement results.

Fig. 11
Fig. 11

Noise amplitude that is reduced greatly because the polarization state has been adjusted.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

nLABC-nLAGC=2X+nL0OPD
2nLABC+LCD+4Xj,j+1,
2nLABC+LCD+4Xj,j+1+2nlj,j+1,
2nLABC+LCFE+4Xj,j+1,
2nLABC+LCFE+4Xj,j+1+2nlj,j+1,
2nLAGC+LCD,
2nLAGC+LCD+2nlj,j+1,
2nLAGC+LCFE,
2nLAGC+LCFE+2nlj,j+1,
nLABC+LAGC+2LCD+2Xj,j+1,
nLABC+LAGC+2LCD+2Xj,j+1+2nlj,j+1,
nLABC+LAGC+2LCFE+2Xj,j+1,
nLABC+LAGC+2LCFE+2Xj,j+1+2nlj,j+1,
nLAGC+LABC+2LCD+2Xj,j+1,
nLAGC+LABC+2LCD+2Xj,j+1+2nlj,j+1,
nLAGC+LABC+2LCFE+2Xj,j+1,
nLAGC+LABC+2LCFE+2Xj,j+1+2nlj,j+1.
nL0+2Xj,j+1=nlj,j+1, j=1, 2,, N.
Δnlj,j+1=2ΔXj,j+1.
nL0+2Xj,j+1=2nlj,j+1, j=1, 2,, N.
PCW2j=P016α12α22η2Xj,j+1Rjk=1j-1Tkβkk=1j-1Tkβk, j=1, 2,, N+1.
PCW7j+1=P016α12α22η2Xj,j+1Rj+1k=1jTkβk×k=1jTkβk, j=1, 2,, N+1.
PCCW4j+1=P016α12α22η2Xj,j+1Rj+1k=j+2N+1Tkβk×k=j+2N+1Tkβk, j=1, 2,, N+1,
PCCW9j=P016α12α22Rjk=j+1N+1Tkβkk=j+1N+1Tkβk, j=1, 2,, N+1.
PDj, j+1=2PCW2jPCW7j+11/2+2PCCW4j+1PCCW9j1/2 =P08α12α22ηXj,j+1×RjRj+1TjβjTjβj1/2k=1j-1Tkβk×k=1j-1Tkβk+RjRj+1Tj+1βj+1Tj+1βj+11/2 ×k=j+2N+1Tkβk k=j+2N+1Tkβk.
PDj, j+1=2PCW2jPCW11j+1+PCW15j+11/2+2PCCW4j+1PCCW13j+PCW17j1/2 =2PCW7j+1PCW10j+PCW14j1/2+2PCCW9j+1×PCCW12j+PCCW16j1/2 =P08α12α222ηXj,j+11/21+ηXj,j+1×RjRj+1TjβjTjβj1/2k=1j-1Tkβk×k=1j-1Tkβk+RjRj+1Tj+1βj+1Tj+1βj+11/2×k=j+1N+1Tkβkk=j+1N+1Tkβk.
PDj, j+1Pmin.
Rj=Rj, Tj=Tj, βj=βj
PDj, j+1|Case 2PDj, j+1|Case 1=2ηXj,j+11/21+ηXj,j+1ηXj,j+1.
l78Sensor 7>l67Sensor 6>l56Sensor 5>l45Sensor 4>l34Sensor 3>l23Sensor 2>l12Sensor 1.

Metrics