Abstract

Grating growths through exposure of presensitized standard fibers to KrF light were recorded in various experimental conditions. It is shown that there exists an optimum sensitization fluence at which the efficiency of the sensitization process is higher. Isochronal thermal annealing of pre-exposed fibers led to a decrease in the sensitization-induced enhancement of photosensitivity. IR-absorption spectroscopy was carried out in fibers or preform plates to monitor the attenuation ascribed to H-bearing species in the same samples. The annealing-induced decay in photosensitivity cannot be correlated with those of the H-bearing species in the whole temperature range (110° C–800° C). This indicates that the enhancement of photosensitivity comes from the transformation of more than one species.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription