Abstract

Grating growths through exposure of presensitized standard fibers to KrF light were recorded in various experimental conditions. It is shown that there exists an optimum sensitization fluence at which the efficiency of the sensitization process is higher. Isochronal thermal annealing of pre-exposed fibers led to a decrease in the sensitization-induced enhancement of photosensitivity. IR-absorption spectroscopy was carried out in fibers or preform plates to monitor the attenuation ascribed to H-bearing species in the same samples. The annealing-induced decay in photosensitivity cannot be correlated with those of the H-bearing species in the whole temperature range (110° C–800° C). This indicates that the enhancement of photosensitivity comes from the transformation of more than one species.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Kohnke, D. W. Nightingale, P. G. Wigley, C. R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), paper PD 20.
  2. M. Äslund, J. Canning, G. Yoffe, “Locking in photosensitivity within optical fiber and planar waveguides by ultraviolet preexposure,” Opt. Lett. 24, 1826–1828 (1999).
    [CrossRef]
  3. H. Kaweno, H. Muentz, Y. Sato, I. Nishimae, A. Sugitatsu, “Reduction of transmission spectrum shift of long-period fiber gratings by a UV-preexposure method,” J. Lightwave Technol. 19, 1221–1228 (2001).
    [CrossRef]
  4. M. Äslund, J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25, 692–694 (2000).
    [CrossRef]
  5. B. O. Guan, H. Y. Tam, X. M. Tao, X. Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
    [CrossRef]
  6. J. Canning, M. Äslund, P. F. Hu, “Ultraviolet-induced absorption losses in hydrogen-loaded optical fibers and in presensitized optical fibers,” Opt. Lett. 25, 1621–1623 (2000).
    [CrossRef]
  7. B. O. Guen, H. Y. Tem, X. M. Tao, X. Y. Dong, “Postfabrication wavelength trimming of fiber Bragg gratings written in H2-loaded fibers,” IEEE Photon. Technol. Lett. 13, 591–593 (2001).
    [CrossRef]
  8. J. Canning, “Photosensitization and photostabilization of laser-induced index changes in optical fibers,” Opt. Fiber Technol. 6, 275–289 (2000).
    [CrossRef]
  9. N. K. Viswanathan, J. F. Brennan, “Indication of re-circulating catalysts in photosensitive reactions with H2-saturated silica fibers,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002), pp. 107–108 (2002).
  10. C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260, 83–98 (1999).
    [CrossRef]
  11. J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: a review,” J. Lightwave Technol. 15, 712–733 (1987).
    [CrossRef]
  12. Q. Zeng, J. F. Stebbins, A. D. Heaney, T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiations and heat treatment,” J. Non-Cryst. Solids 258, 78–91 (1999).
    [CrossRef]
  13. B. Leconte, “Contribution a l’étude de la photosensibilité des fibres en silice sous l’effet d’une insolation par un laser à ArF,” Ph.D. dissertation (University of Lille, Lille, France, 1998).
  14. H. Patrick, S. L. Gilbert, “Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber,” Opt. Lett. 18, 1484–1486 (1993).
    [CrossRef] [PubMed]
  15. J. C. Phillips, “Microscopic theory of the Kohlrausch relaxation constant βK”, J. Non-Cryst. Solids 172–174, 98–103 (1994).
    [CrossRef]
  16. M. Poirier, S. Thibault, J. Lauzon, F. Ouellette, “Dynamic and orientational behavior of UV-induced luminescence bleaching in Ge-doped silica optical fiber,” Opt. Lett. 18, 870–872 (1993).
    [CrossRef] [PubMed]
  17. B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
    [CrossRef]
  18. P. Grassberger, I. Procaccia, “The long time properties of diffusion in a medium with static traps,” J. Chem. Phys. 77, 6281–6284 (1982).
    [CrossRef]
  19. K. Kim, A. J. Epstein, “Explanation of stretched exponential growth behavior,” Appl. Phys. Lett. 67, 2786–2788 (1995).
    [CrossRef]
  20. R. M. Atkins, P. J. Lemaire, T. Erdogan, V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
    [CrossRef]
  21. T. E. Tsai, G. M. Williams, E. J. Friebele, “Index structure of fiber Bragg gratings in Ge-SiO2 fibers,” Opt. Lett. 22, 224–226 (1997).
    [CrossRef] [PubMed]

2001 (2)

H. Kaweno, H. Muentz, Y. Sato, I. Nishimae, A. Sugitatsu, “Reduction of transmission spectrum shift of long-period fiber gratings by a UV-preexposure method,” J. Lightwave Technol. 19, 1221–1228 (2001).
[CrossRef]

B. O. Guen, H. Y. Tem, X. M. Tao, X. Y. Dong, “Postfabrication wavelength trimming of fiber Bragg gratings written in H2-loaded fibers,” IEEE Photon. Technol. Lett. 13, 591–593 (2001).
[CrossRef]

2000 (4)

J. Canning, “Photosensitization and photostabilization of laser-induced index changes in optical fibers,” Opt. Fiber Technol. 6, 275–289 (2000).
[CrossRef]

M. Äslund, J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25, 692–694 (2000).
[CrossRef]

B. O. Guan, H. Y. Tam, X. M. Tao, X. Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[CrossRef]

J. Canning, M. Äslund, P. F. Hu, “Ultraviolet-induced absorption losses in hydrogen-loaded optical fibers and in presensitized optical fibers,” Opt. Lett. 25, 1621–1623 (2000).
[CrossRef]

1999 (3)

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260, 83–98 (1999).
[CrossRef]

Q. Zeng, J. F. Stebbins, A. D. Heaney, T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiations and heat treatment,” J. Non-Cryst. Solids 258, 78–91 (1999).
[CrossRef]

M. Äslund, J. Canning, G. Yoffe, “Locking in photosensitivity within optical fiber and planar waveguides by ultraviolet preexposure,” Opt. Lett. 24, 1826–1828 (1999).
[CrossRef]

1998 (1)

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

1997 (1)

1995 (1)

K. Kim, A. J. Epstein, “Explanation of stretched exponential growth behavior,” Appl. Phys. Lett. 67, 2786–2788 (1995).
[CrossRef]

1994 (1)

J. C. Phillips, “Microscopic theory of the Kohlrausch relaxation constant βK”, J. Non-Cryst. Solids 172–174, 98–103 (1994).
[CrossRef]

1993 (3)

1987 (1)

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: a review,” J. Lightwave Technol. 15, 712–733 (1987).
[CrossRef]

1982 (1)

P. Grassberger, I. Procaccia, “The long time properties of diffusion in a medium with static traps,” J. Chem. Phys. 77, 6281–6284 (1982).
[CrossRef]

Äslund, M.

Atkins, R. M.

R. M. Atkins, P. J. Lemaire, T. Erdogan, V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[CrossRef]

Bernage, P.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260, 83–98 (1999).
[CrossRef]

Brennan, J. F.

N. K. Viswanathan, J. F. Brennan, “Indication of re-circulating catalysts in photosensitive reactions with H2-saturated silica fibers,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002), pp. 107–108 (2002).

Canning, J.

Cordier, P.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260, 83–98 (1999).
[CrossRef]

Dalle, C.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260, 83–98 (1999).
[CrossRef]

Depecker, C.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260, 83–98 (1999).
[CrossRef]

Dong, X. Y.

B. O. Guen, H. Y. Tem, X. M. Tao, X. Y. Dong, “Postfabrication wavelength trimming of fiber Bragg gratings written in H2-loaded fibers,” IEEE Photon. Technol. Lett. 13, 591–593 (2001).
[CrossRef]

B. O. Guan, H. Y. Tam, X. M. Tao, X. Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[CrossRef]

Douay, M.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260, 83–98 (1999).
[CrossRef]

Epstein, A. J.

K. Kim, A. J. Epstein, “Explanation of stretched exponential growth behavior,” Appl. Phys. Lett. 67, 2786–2788 (1995).
[CrossRef]

Erdogan, T.

Q. Zeng, J. F. Stebbins, A. D. Heaney, T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiations and heat treatment,” J. Non-Cryst. Solids 258, 78–91 (1999).
[CrossRef]

R. M. Atkins, P. J. Lemaire, T. Erdogan, V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[CrossRef]

Friebele, E. J.

Gilbert, S. L.

Grassberger, P.

P. Grassberger, I. Procaccia, “The long time properties of diffusion in a medium with static traps,” J. Chem. Phys. 77, 6281–6284 (1982).
[CrossRef]

Guan, B. O.

B. O. Guan, H. Y. Tam, X. M. Tao, X. Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[CrossRef]

Guen, B. O.

B. O. Guen, H. Y. Tem, X. M. Tao, X. Y. Dong, “Postfabrication wavelength trimming of fiber Bragg gratings written in H2-loaded fibers,” IEEE Photon. Technol. Lett. 13, 591–593 (2001).
[CrossRef]

Heaney, A. D.

Q. Zeng, J. F. Stebbins, A. D. Heaney, T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiations and heat treatment,” J. Non-Cryst. Solids 258, 78–91 (1999).
[CrossRef]

Hu, P. F.

Kaweno, H.

Kim, K.

K. Kim, A. J. Epstein, “Explanation of stretched exponential growth behavior,” Appl. Phys. Lett. 67, 2786–2788 (1995).
[CrossRef]

Kohnke, G. E.

G. E. Kohnke, D. W. Nightingale, P. G. Wigley, C. R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), paper PD 20.

Lauzon, J.

Leconte, B.

B. Leconte, “Contribution a l’étude de la photosensibilité des fibres en silice sous l’effet d’une insolation par un laser à ArF,” Ph.D. dissertation (University of Lille, Lille, France, 1998).

Lemaire, P. J.

R. M. Atkins, P. J. Lemaire, T. Erdogan, V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[CrossRef]

Mizrahi, V.

R. M. Atkins, P. J. Lemaire, T. Erdogan, V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[CrossRef]

Muentz, H.

Niay, P.

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260, 83–98 (1999).
[CrossRef]

Nightingale, D. W.

G. E. Kohnke, D. W. Nightingale, P. G. Wigley, C. R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), paper PD 20.

Nishimae, I.

Ouellette, F.

Patrick, H.

Phillips, J. C.

J. C. Phillips, “Microscopic theory of the Kohlrausch relaxation constant βK”, J. Non-Cryst. Solids 172–174, 98–103 (1994).
[CrossRef]

Poirier, M.

Pollock, C. R.

G. E. Kohnke, D. W. Nightingale, P. G. Wigley, C. R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), paper PD 20.

Poumellec, B.

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

Procaccia, I.

P. Grassberger, I. Procaccia, “The long time properties of diffusion in a medium with static traps,” J. Chem. Phys. 77, 6281–6284 (1982).
[CrossRef]

Sato, Y.

Stebbins, J. F.

Q. Zeng, J. F. Stebbins, A. D. Heaney, T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiations and heat treatment,” J. Non-Cryst. Solids 258, 78–91 (1999).
[CrossRef]

Stone, J.

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: a review,” J. Lightwave Technol. 15, 712–733 (1987).
[CrossRef]

Sugitatsu, A.

Tam, H. Y.

B. O. Guan, H. Y. Tam, X. M. Tao, X. Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[CrossRef]

Tao, X. M.

B. O. Guen, H. Y. Tem, X. M. Tao, X. Y. Dong, “Postfabrication wavelength trimming of fiber Bragg gratings written in H2-loaded fibers,” IEEE Photon. Technol. Lett. 13, 591–593 (2001).
[CrossRef]

B. O. Guan, H. Y. Tam, X. M. Tao, X. Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[CrossRef]

Tem, H. Y.

B. O. Guen, H. Y. Tem, X. M. Tao, X. Y. Dong, “Postfabrication wavelength trimming of fiber Bragg gratings written in H2-loaded fibers,” IEEE Photon. Technol. Lett. 13, 591–593 (2001).
[CrossRef]

Thibault, S.

Tsai, T. E.

Viswanathan, N. K.

N. K. Viswanathan, J. F. Brennan, “Indication of re-circulating catalysts in photosensitive reactions with H2-saturated silica fibers,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002), pp. 107–108 (2002).

Wigley, P. G.

G. E. Kohnke, D. W. Nightingale, P. G. Wigley, C. R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), paper PD 20.

Williams, G. M.

Yoffe, G.

Zeng, Q.

Q. Zeng, J. F. Stebbins, A. D. Heaney, T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiations and heat treatment,” J. Non-Cryst. Solids 258, 78–91 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

K. Kim, A. J. Epstein, “Explanation of stretched exponential growth behavior,” Appl. Phys. Lett. 67, 2786–2788 (1995).
[CrossRef]

Electron. Lett. (1)

R. M. Atkins, P. J. Lemaire, T. Erdogan, V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29, 1234–1235 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. O. Guan, H. Y. Tam, X. M. Tao, X. Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[CrossRef]

B. O. Guen, H. Y. Tem, X. M. Tao, X. Y. Dong, “Postfabrication wavelength trimming of fiber Bragg gratings written in H2-loaded fibers,” IEEE Photon. Technol. Lett. 13, 591–593 (2001).
[CrossRef]

J. Chem. Phys. (1)

P. Grassberger, I. Procaccia, “The long time properties of diffusion in a medium with static traps,” J. Chem. Phys. 77, 6281–6284 (1982).
[CrossRef]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (4)

Q. Zeng, J. F. Stebbins, A. D. Heaney, T. Erdogan, “Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiations and heat treatment,” J. Non-Cryst. Solids 258, 78–91 (1999).
[CrossRef]

C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre preforms,” J. Non-Cryst. Solids 260, 83–98 (1999).
[CrossRef]

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

J. C. Phillips, “Microscopic theory of the Kohlrausch relaxation constant βK”, J. Non-Cryst. Solids 172–174, 98–103 (1994).
[CrossRef]

Opt. Fiber Technol. (1)

J. Canning, “Photosensitization and photostabilization of laser-induced index changes in optical fibers,” Opt. Fiber Technol. 6, 275–289 (2000).
[CrossRef]

Opt. Lett. (6)

Other (3)

B. Leconte, “Contribution a l’étude de la photosensibilité des fibres en silice sous l’effet d’une insolation par un laser à ArF,” Ph.D. dissertation (University of Lille, Lille, France, 1998).

G. E. Kohnke, D. W. Nightingale, P. G. Wigley, C. R. Pollock, “Photosensitization of optical fiber by UV exposure of hydrogen loaded fiber,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), paper PD 20.

N. K. Viswanathan, J. F. Brennan, “Indication of re-circulating catalysts in photosensitive reactions with H2-saturated silica fibers,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002), pp. 107–108 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Growths of grating refractive-index modulation in series A and pristine SMF-28 (Corning) fibers. The number N p of pre-exposure pulses is the parameter of the experiment. Symbols, experimental data; solid curves, fits of the data to Eq. (3).

Fig. 2
Fig. 2

Shifts in the Bragg wavelengths experienced by gratings in series A and pristine SMF-28 fibers. The number N p of pre-exposure pulses is the parameter of the experiment. Symbols, experimental data; solid curves, fits of the data to Eq. (3).

Fig. 3
Fig. 3

Growth of grating refractive-index modulation in series B1 and pristine SMF-28 fibers. Each fiber (except the pristine fiber) was pre-exposed to 20,000 UV pulses and then annealed. The temperature θ of the 3-h annealing is the parameter of the experiment.

Fig. 4
Fig. 4

Residual normalized enhancement in photosensitivity (Δn mod or Δn mean) as a function of the annealing temperature. Two pre-exposure conditions (N p = 2000 and N p = 20,000, series B fibers) were investigated.

Fig. 5
Fig. 5

Samples of fiber absorption spectra as a function of the annealing temperature. The normalization factor is the excess loss at the peak after accelerated outgassing.

Fig. 6
Fig. 6

Samples of preform plate Fourier transform IR-absorption spectra as a function of the annealing temperature. The normalization factor was the excess loss coefficient at the peak (6.04 dB/cm) after the step of accelerated outgassing.

Fig. 7
Fig. 7

Evolutions of the normalized UV-induced excess loss ascribed to H-bearing species as a function of the 3-h isochronal annealing temperature. The normalization factors are the UV-induced excess loss before annealing. The T-OH and GeH initial excess losses have been measured by the monitoring of the fiber absorption spectra (see Fig. 5) and preform plate absorption spectra (see Fig. 6), respectively. The gain in photosensitivity has been calculated by subtraction of the modulation that corresponds to a grating written in a pristine fiber from that for a grating written in a pre-exposed fiber (N p = 20,000 pulses).

Tables (1)

Tables Icon

Table 1 List of Initial Treatments Prior to Bragg Grating Inscription or Infrared Absorption Spectroscopy

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ak1hν Bk2hν C,
Δnn1Ni+n21-exp-n3Ni.
Δnmod=λBπηVLarg tanh 1-T.
Δnmod or Δnmean=m11-exp-3×10-5Niβ.
tmax=lnk2/k1k2-k1,

Metrics