Abstract

We discuss the design and fabrication of interleaved, sampled fiber Bragg gratings (ISFBGs) for use in hybrid wavelength calibration references covering the 1300–1600-nm region. We demonstrate use of sampled phase masks (SPMs) to make sampled gratings and ISFBGs. The success of the SPM technique suggests a single-exposure method with an interleaved, sampled phase mask to make ISFBGs.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Gilbert, W. C. Swann, “Acetylene 12C2H2 absorption reference for 1510 to 1540 nm wavelength calibration-SRM 2517a,” NIST spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001).
  2. S. L. Gilbert, W. C. Swann, C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1560 nm wavelength calibration-SRM 2519,” NIST Spec. Publ. 260–137 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).
  3. T. Dennis, W. C. Swann, S. L. Gilbert, “Wavelength references for 1300 nm and L-band WDM,” in Optical Fiber Communications, Vol. 54 of 2001 OSA Technical Digest Services (Optical Society of America, Washington, D.C., 2001), paper WDD83–1.
  4. W. C. Swann, M. A. Hubbard, S. L. Gilbert, “Hybrid multiple wavelength reference using fiber gratings and molecular absorption,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 1999, E. J. Friebele, R. Kashyap, T. Erdogan, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 198–200.
  5. A. Othonos, X. Lee, R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972–1973 (1994).
    [CrossRef]
  6. B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellete, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
    [CrossRef]
  7. W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled fiber grating-based dispersion slope compensator,” IEEE Photon. Technol. Lett. 11, 1280–1282. (1999).
    [CrossRef]
  8. W. H. Loh, F. O. Zhou, J. J. Pan, “Novel designs for sampled grating-based multiplexers-demultiplexers,” Opt. Lett. 24, 1457–1459 (1999).
    [CrossRef]
  9. M. Gioannini, I. Montrosset, “Novel interleaved sampled grating mirrors for widely tunable DBR lasers,” IEE Proc. Optoelectron. 148, 13–18 (2001).
    [CrossRef]
  10. O. Durand, E. Gohin, I. Riant, “Simple and low-cost realization method of low reflective and almost flat 200-GHz multichannel filter over 50 nm with sampled FBG,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper TuQ2, pp. 108–110.

2001 (1)

M. Gioannini, I. Montrosset, “Novel interleaved sampled grating mirrors for widely tunable DBR lasers,” IEE Proc. Optoelectron. 148, 13–18 (2001).
[CrossRef]

1999 (2)

W. H. Loh, F. O. Zhou, J. J. Pan, “Novel designs for sampled grating-based multiplexers-demultiplexers,” Opt. Lett. 24, 1457–1459 (1999).
[CrossRef]

W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled fiber grating-based dispersion slope compensator,” IEEE Photon. Technol. Lett. 11, 1280–1282. (1999).
[CrossRef]

1994 (2)

A. Othonos, X. Lee, R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972–1973 (1994).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellete, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

Dennis, T.

T. Dennis, W. C. Swann, S. L. Gilbert, “Wavelength references for 1300 nm and L-band WDM,” in Optical Fiber Communications, Vol. 54 of 2001 OSA Technical Digest Services (Optical Society of America, Washington, D.C., 2001), paper WDD83–1.

Durand, O.

O. Durand, E. Gohin, I. Riant, “Simple and low-cost realization method of low reflective and almost flat 200-GHz multichannel filter over 50 nm with sampled FBG,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper TuQ2, pp. 108–110.

Eggleton, B. J.

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellete, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

Gilbert, S. L.

T. Dennis, W. C. Swann, S. L. Gilbert, “Wavelength references for 1300 nm and L-band WDM,” in Optical Fiber Communications, Vol. 54 of 2001 OSA Technical Digest Services (Optical Society of America, Washington, D.C., 2001), paper WDD83–1.

S. L. Gilbert, W. C. Swann, “Acetylene 12C2H2 absorption reference for 1510 to 1540 nm wavelength calibration-SRM 2517a,” NIST spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001).

W. C. Swann, M. A. Hubbard, S. L. Gilbert, “Hybrid multiple wavelength reference using fiber gratings and molecular absorption,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 1999, E. J. Friebele, R. Kashyap, T. Erdogan, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 198–200.

S. L. Gilbert, W. C. Swann, C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1560 nm wavelength calibration-SRM 2519,” NIST Spec. Publ. 260–137 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).

Gioannini, M.

M. Gioannini, I. Montrosset, “Novel interleaved sampled grating mirrors for widely tunable DBR lasers,” IEE Proc. Optoelectron. 148, 13–18 (2001).
[CrossRef]

Gohin, E.

O. Durand, E. Gohin, I. Riant, “Simple and low-cost realization method of low reflective and almost flat 200-GHz multichannel filter over 50 nm with sampled FBG,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper TuQ2, pp. 108–110.

Hubbard, M. A.

W. C. Swann, M. A. Hubbard, S. L. Gilbert, “Hybrid multiple wavelength reference using fiber gratings and molecular absorption,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 1999, E. J. Friebele, R. Kashyap, T. Erdogan, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 198–200.

Krug, P. A.

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellete, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

Lee, X.

A. Othonos, X. Lee, R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972–1973 (1994).
[CrossRef]

Loh, W. H.

W. H. Loh, F. O. Zhou, J. J. Pan, “Novel designs for sampled grating-based multiplexers-demultiplexers,” Opt. Lett. 24, 1457–1459 (1999).
[CrossRef]

W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled fiber grating-based dispersion slope compensator,” IEEE Photon. Technol. Lett. 11, 1280–1282. (1999).
[CrossRef]

Measures, R. M.

A. Othonos, X. Lee, R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972–1973 (1994).
[CrossRef]

Montrosset, I.

M. Gioannini, I. Montrosset, “Novel interleaved sampled grating mirrors for widely tunable DBR lasers,” IEE Proc. Optoelectron. 148, 13–18 (2001).
[CrossRef]

Othonos, A.

A. Othonos, X. Lee, R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972–1973 (1994).
[CrossRef]

Ouellete, F.

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellete, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

Pan, J. J.

W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled fiber grating-based dispersion slope compensator,” IEEE Photon. Technol. Lett. 11, 1280–1282. (1999).
[CrossRef]

W. H. Loh, F. O. Zhou, J. J. Pan, “Novel designs for sampled grating-based multiplexers-demultiplexers,” Opt. Lett. 24, 1457–1459 (1999).
[CrossRef]

Poladian, L.

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellete, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

Riant, I.

O. Durand, E. Gohin, I. Riant, “Simple and low-cost realization method of low reflective and almost flat 200-GHz multichannel filter over 50 nm with sampled FBG,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper TuQ2, pp. 108–110.

Swann, W. C.

T. Dennis, W. C. Swann, S. L. Gilbert, “Wavelength references for 1300 nm and L-band WDM,” in Optical Fiber Communications, Vol. 54 of 2001 OSA Technical Digest Services (Optical Society of America, Washington, D.C., 2001), paper WDD83–1.

S. L. Gilbert, W. C. Swann, “Acetylene 12C2H2 absorption reference for 1510 to 1540 nm wavelength calibration-SRM 2517a,” NIST spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001).

W. C. Swann, M. A. Hubbard, S. L. Gilbert, “Hybrid multiple wavelength reference using fiber gratings and molecular absorption,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 1999, E. J. Friebele, R. Kashyap, T. Erdogan, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 198–200.

S. L. Gilbert, W. C. Swann, C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1560 nm wavelength calibration-SRM 2519,” NIST Spec. Publ. 260–137 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).

Wang, C.-M.

S. L. Gilbert, W. C. Swann, C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1560 nm wavelength calibration-SRM 2519,” NIST Spec. Publ. 260–137 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).

Zhou, F. O.

Zhou, F. Q.

W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled fiber grating-based dispersion slope compensator,” IEEE Photon. Technol. Lett. 11, 1280–1282. (1999).
[CrossRef]

Electron. Lett. (2)

A. Othonos, X. Lee, R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972–1973 (1994).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellete, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[CrossRef]

IEE Proc. Optoelectron. (1)

M. Gioannini, I. Montrosset, “Novel interleaved sampled grating mirrors for widely tunable DBR lasers,” IEE Proc. Optoelectron. 148, 13–18 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. H. Loh, F. Q. Zhou, J. J. Pan, “Sampled fiber grating-based dispersion slope compensator,” IEEE Photon. Technol. Lett. 11, 1280–1282. (1999).
[CrossRef]

Opt. Lett. (1)

Other (5)

O. Durand, E. Gohin, I. Riant, “Simple and low-cost realization method of low reflective and almost flat 200-GHz multichannel filter over 50 nm with sampled FBG,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper TuQ2, pp. 108–110.

S. L. Gilbert, W. C. Swann, “Acetylene 12C2H2 absorption reference for 1510 to 1540 nm wavelength calibration-SRM 2517a,” NIST spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001).

S. L. Gilbert, W. C. Swann, C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1560 nm wavelength calibration-SRM 2519,” NIST Spec. Publ. 260–137 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).

T. Dennis, W. C. Swann, S. L. Gilbert, “Wavelength references for 1300 nm and L-band WDM,” in Optical Fiber Communications, Vol. 54 of 2001 OSA Technical Digest Services (Optical Society of America, Washington, D.C., 2001), paper WDD83–1.

W. C. Swann, M. A. Hubbard, S. L. Gilbert, “Hybrid multiple wavelength reference using fiber gratings and molecular absorption,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 1999, E. J. Friebele, R. Kashyap, T. Erdogan, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 198–200.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of a sampled FBG written in an optical fiber. Vertical lines indicate maxima in the refractive-index profile. (b) Schematic diagram of an ISFBG. The amplitude modulation periods of the interleaved gratings are the same (ΛMOD), but the sample lengths (X ON-1 and X ON-2) can be different.

Fig. 2
Fig. 2

(a) Schematic diagram of the SPM technique. Ultraviolet light passes through the SPM from the bottom of the page and then onto the fiber core (FC). The phase mask grooves are indicated in the SPM; thick lines on the front face of the SPM indicate opaque (metal) regions. Vertical lines across the fiber core indicate maxima in the refractive-index profile, as in Fig. 1. (b) Schematic diagram of an ISPM with two interleaved patterns. Neighboring ON regions with different values of ΛPM must be sufficiently separated to prevent interference between their +1 and -1 diffraction orders.

Fig. 3
Fig. 3

(a) Reflected light photomicrograph of SPM-1. Brighter regions are the opaque metal overcoat (Al); darker regions contain phase mask grooves. D = 50 and 75-µm regions are shown. During exposure, the fiber lies horizontally across the mask. (b) Phase mask grooves visible in transmitted light photomicrograph over the D = 25-µm section of SPM-1.

Fig. 4
Fig. 4

Reflectance spectrum of an ISFBG. Resolution bandwidth is 100 pm. (a) Spectral region that is due to SPM-2; dotted curve is the envelope function given in expression (1) by use of least-squares fitting parameters of n 1 = 1.03 × 10-4, ΔλBW = 21.4 nm, and λ C * = 1300.89 nm. (b) Spectral region that is due to SPM-1; dotted curve is same as in (a), with n 1 = 2.25 × 10-4, ΔλBW = 48.7 nm, and λ C * = 1540.02 nm.

Fig. 5
Fig. 5

Closeup of the central regions’ reflectance spectra of ISFBG. Otherwise same as Fig. 4.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tanh2ΔnπXONLλΛMODsinc 2λ-λC*ΔλBW,

Metrics