Abstract

In the framework of current developments in 157-nm lithography we have investigated the performance of photodetectors with emphasis to their stability and linearity. The measurements were performed in the radiometry laboratories of the Physikalisch-Technische Bundesanstalt at the Berlin electron-storage rings BESSY I and BESSY II with spectrally dispersed synchrotron radiation as well as with highly pulsed F2 laser radiation at 157 nm in combination with a cryogenic radiometer as the primary detector standard. Relative standard uncertainties of as little as 1% were achieved for the calibration of photodetectors in the spectral range of ultraviolet and vacuum-ultraviolet radiation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. International SEMATECH, International Technology Roadmap for Semiconductors (International SEMATECH, Austin, Texas, 2001).
  2. U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).
  3. K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2 lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
  4. K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
    [CrossRef]
  5. P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
    [CrossRef]
  6. R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).
  7. L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
    [CrossRef]
  8. M. Richter, G. Ulm, “Radiometry using synchrotron radiation at PTB,” J. Electron Spectrosc. Relat. Phenom. 101–103, 1013–1018 (1999).
    [CrossRef]
  9. H. Rabus, V. Persch, G. Ulm, “Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges,” Appl. Opt. 36, 5421–5440 (1997).
    [CrossRef] [PubMed]
  10. M. Richter, J. Hollandt, U. Kroth, W. Paustian, R. Thornagel, G. Ulm, “The two normal-incidence monochromator beam lines of PTB at BESSY II,” Nucl. Instrum. Methods 467–468, 605–608 (2001).
  11. M. Richter, F. Becker, K. Grützmacher, U. Kroth, H. Rabus, K. Vogler, E. Bergmann, U. Stamm, “Metrology of laser radiation in the DUV for lithography,” in Laser Beam and Optics Characterization, H. Weber, H. Laabs, eds. (Technische Universität Berlin, Berlin, 2000), pp. 301–303.
  12. M. Richter, U. Kroth, K. Vogler, E. Bergmann, “Metrology of 157 nm laser radiation for lithography,” in BESSY Annual Report (BESSY, Berlin, 2000), pp. 70–71.
  13. P. Kuschnerus, “Quantenausbeute von kristallinem Silicium im Spektralbereich von 40 nm bis 400 nm,” Ph.D. dissertation (Berlin Technical University, Berlin, 2000).
  14. R. E. Vest, L. R. Canfield, “Photoemission from silicon photodiodes and induced changes in the detection efficiency in the far ultraviolet,” in Synchrotron Radiation Instrumentation: Tenth US National Conference, E. Fontes, ed., Vol. 417 of AIP Conference Proceedings (American Institute of Physics, New York, 1997), pp. 234–240.
  15. T. Saito, H. Onuki, in TELL-TERAS Activity Report 1980–1986, T. Tomimasu, ed. (Electrotechnical Laboratory, Tsukuba, Japan, 1987), pp. 128–130.
  16. R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 65th ed. (CRC Press, Boca Raton, Fla., 1984).

2001

M. Richter, J. Hollandt, U. Kroth, W. Paustian, R. Thornagel, G. Ulm, “The two normal-incidence monochromator beam lines of PTB at BESSY II,” Nucl. Instrum. Methods 467–468, 605–608 (2001).

1999

M. Richter, G. Ulm, “Radiometry using synchrotron radiation at PTB,” J. Electron Spectrosc. Relat. Phenom. 101–103, 1013–1018 (1999).
[CrossRef]

1998

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

1997

1996

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Basting, D.

U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).

Becker, F.

M. Richter, F. Becker, K. Grützmacher, U. Kroth, H. Rabus, K. Vogler, E. Bergmann, U. Stamm, “Metrology of laser radiation in the DUV for lithography,” in Laser Beam and Optics Characterization, H. Weber, H. Laabs, eds. (Technische Universität Berlin, Berlin, 2000), pp. 301–303.

Bergmann, E.

M. Richter, F. Becker, K. Grützmacher, U. Kroth, H. Rabus, K. Vogler, E. Bergmann, U. Stamm, “Metrology of laser radiation in the DUV for lithography,” in Laser Beam and Optics Characterization, H. Weber, H. Laabs, eds. (Technische Universität Berlin, Berlin, 2000), pp. 301–303.

M. Richter, U. Kroth, K. Vogler, E. Bergmann, “Metrology of 157 nm laser radiation for lithography,” in BESSY Annual Report (BESSY, Berlin, 2000), pp. 70–71.

Bragin, I.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2 lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).

U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).

Canfield, L. R.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

R. E. Vest, L. R. Canfield, “Photoemission from silicon photodiodes and induced changes in the detection efficiency in the far ultraviolet,” in Synchrotron Radiation Instrumentation: Tenth US National Conference, E. Fontes, ed., Vol. 417 of AIP Conference Proceedings (American Institute of Physics, New York, 1997), pp. 234–240.

Dehmer, J. L.

R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).

Desor, R.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Govorkov, S.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2 lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).

Govorkov, S. V.

U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).

Grützmacher, K.

M. Richter, F. Becker, K. Grützmacher, U. Kroth, H. Rabus, K. Vogler, E. Bergmann, U. Stamm, “Metrology of laser radiation in the DUV for lithography,” in Laser Beam and Optics Characterization, H. Weber, H. Laabs, eds. (Technische Universität Berlin, Berlin, 2000), pp. 301–303.

Gupta, R.

R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).

Hollandt, J.

M. Richter, J. Hollandt, U. Kroth, W. Paustian, R. Thornagel, G. Ulm, “The two normal-incidence monochromator beam lines of PTB at BESSY II,” Nucl. Instrum. Methods 467–468, 605–608 (2001).

Hua, G.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2 lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).

Kleinschmidt, J.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2 lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).

U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).

Korde, R.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Kroth, U.

M. Richter, J. Hollandt, U. Kroth, W. Paustian, R. Thornagel, G. Ulm, “The two normal-incidence monochromator beam lines of PTB at BESSY II,” Nucl. Instrum. Methods 467–468, 605–608 (2001).

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

M. Richter, F. Becker, K. Grützmacher, U. Kroth, H. Rabus, K. Vogler, E. Bergmann, U. Stamm, “Metrology of laser radiation in the DUV for lithography,” in Laser Beam and Optics Characterization, H. Weber, H. Laabs, eds. (Technische Universität Berlin, Berlin, 2000), pp. 301–303.

M. Richter, U. Kroth, K. Vogler, E. Bergmann, “Metrology of 157 nm laser radiation for lithography,” in BESSY Annual Report (BESSY, Berlin, 2000), pp. 70–71.

Kuschnerus, P.

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

P. Kuschnerus, “Quantenausbeute von kristallinem Silicium im Spektralbereich von 40 nm bis 400 nm,” Ph.D. dissertation (Berlin Technical University, Berlin, 2000).

Lykke, K. R.

R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).

Melchior, H.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Onuki, H.

T. Saito, H. Onuki, in TELL-TERAS Activity Report 1980–1986, T. Tomimasu, ed. (Electrotechnical Laboratory, Tsukuba, Japan, 1987), pp. 128–130.

Pätzel, R.

U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2 lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).

Paustian, W.

M. Richter, J. Hollandt, U. Kroth, W. Paustian, R. Thornagel, G. Ulm, “The two normal-incidence monochromator beam lines of PTB at BESSY II,” Nucl. Instrum. Methods 467–468, 605–608 (2001).

Persch, V.

H. Rabus, V. Persch, G. Ulm, “Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges,” Appl. Opt. 36, 5421–5440 (1997).
[CrossRef] [PubMed]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Rabus, H.

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

H. Rabus, V. Persch, G. Ulm, “Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges,” Appl. Opt. 36, 5421–5440 (1997).
[CrossRef] [PubMed]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

M. Richter, F. Becker, K. Grützmacher, U. Kroth, H. Rabus, K. Vogler, E. Bergmann, U. Stamm, “Metrology of laser radiation in the DUV for lithography,” in Laser Beam and Optics Characterization, H. Weber, H. Laabs, eds. (Technische Universität Berlin, Berlin, 2000), pp. 301–303.

Richter, M.

M. Richter, J. Hollandt, U. Kroth, W. Paustian, R. Thornagel, G. Ulm, “The two normal-incidence monochromator beam lines of PTB at BESSY II,” Nucl. Instrum. Methods 467–468, 605–608 (2001).

M. Richter, G. Ulm, “Radiometry using synchrotron radiation at PTB,” J. Electron Spectrosc. Relat. Phenom. 101–103, 1013–1018 (1999).
[CrossRef]

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

M. Richter, F. Becker, K. Grützmacher, U. Kroth, H. Rabus, K. Vogler, E. Bergmann, U. Stamm, “Metrology of laser radiation in the DUV for lithography,” in Laser Beam and Optics Characterization, H. Weber, H. Laabs, eds. (Technische Universität Berlin, Berlin, 2000), pp. 301–303.

M. Richter, U. Kroth, K. Vogler, E. Bergmann, “Metrology of 157 nm laser radiation for lithography,” in BESSY Annual Report (BESSY, Berlin, 2000), pp. 70–71.

Saito, T.

T. Saito, H. Onuki, in TELL-TERAS Activity Report 1980–1986, T. Tomimasu, ed. (Electrotechnical Laboratory, Tsukuba, Japan, 1987), pp. 128–130.

Schmidtke, H.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Scholze, F.

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

Shaw, P. S.

R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).

Slobodtchikov, E.

U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).

Solt, K.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Stamm, U.

U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).

M. Richter, F. Becker, K. Grützmacher, U. Kroth, H. Rabus, K. Vogler, E. Bergmann, U. Stamm, “Metrology of laser radiation in the DUV for lithography,” in Laser Beam and Optics Characterization, H. Weber, H. Laabs, eds. (Technische Universität Berlin, Berlin, 2000), pp. 301–303.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2 lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).

Thornagel, R.

M. Richter, J. Hollandt, U. Kroth, W. Paustian, R. Thornagel, G. Ulm, “The two normal-incidence monochromator beam lines of PTB at BESSY II,” Nucl. Instrum. Methods 467–468, 605–608 (2001).

Ulm, G.

M. Richter, J. Hollandt, U. Kroth, W. Paustian, R. Thornagel, G. Ulm, “The two normal-incidence monochromator beam lines of PTB at BESSY II,” Nucl. Instrum. Methods 467–468, 605–608 (2001).

M. Richter, G. Ulm, “Radiometry using synchrotron radiation at PTB,” J. Electron Spectrosc. Relat. Phenom. 101–103, 1013–1018 (1999).
[CrossRef]

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

H. Rabus, V. Persch, G. Ulm, “Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges,” Appl. Opt. 36, 5421–5440 (1997).
[CrossRef] [PubMed]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Vest, R. E.

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

R. E. Vest, L. R. Canfield, “Photoemission from silicon photodiodes and induced changes in the detection efficiency in the far ultraviolet,” in Synchrotron Radiation Instrumentation: Tenth US National Conference, E. Fontes, ed., Vol. 417 of AIP Conference Proceedings (American Institute of Physics, New York, 1997), pp. 234–240.

Vofl, F.

U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).

Vogler, K.

U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).

M. Richter, F. Becker, K. Grützmacher, U. Kroth, H. Rabus, K. Vogler, E. Bergmann, U. Stamm, “Metrology of laser radiation in the DUV for lithography,” in Laser Beam and Optics Characterization, H. Weber, H. Laabs, eds. (Technische Universität Berlin, Berlin, 2000), pp. 301–303.

M. Richter, U. Kroth, K. Vogler, E. Bergmann, “Metrology of 157 nm laser radiation for lithography,” in BESSY Annual Report (BESSY, Berlin, 2000), pp. 70–71.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2 lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).

Voss, F.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2 lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).

Werner, L.

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi–n–Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom.

M. Richter, G. Ulm, “Radiometry using synchrotron radiation at PTB,” J. Electron Spectrosc. Relat. Phenom. 101–103, 1013–1018 (1999).
[CrossRef]

Metrologia

P. Kuschnerus, H. Rabus, M. Richter, F. Scholze, L. Werner, G. Ulm, “Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range,” Metrologia 35, 355–362 (1998).
[CrossRef]

L. R. Canfield, R. E. Vest, R. Korde, H. Schmidtke, R. Desor, “Absolute silicon photodiodes for 160 nm to 254 nm photons,” Metrologia 35, 329–334 (1998).
[CrossRef]

Nucl. Instrum. Methods

M. Richter, J. Hollandt, U. Kroth, W. Paustian, R. Thornagel, G. Ulm, “The two normal-incidence monochromator beam lines of PTB at BESSY II,” Nucl. Instrum. Methods 467–468, 605–608 (2001).

Other

M. Richter, F. Becker, K. Grützmacher, U. Kroth, H. Rabus, K. Vogler, E. Bergmann, U. Stamm, “Metrology of laser radiation in the DUV for lithography,” in Laser Beam and Optics Characterization, H. Weber, H. Laabs, eds. (Technische Universität Berlin, Berlin, 2000), pp. 301–303.

M. Richter, U. Kroth, K. Vogler, E. Bergmann, “Metrology of 157 nm laser radiation for lithography,” in BESSY Annual Report (BESSY, Berlin, 2000), pp. 70–71.

P. Kuschnerus, “Quantenausbeute von kristallinem Silicium im Spektralbereich von 40 nm bis 400 nm,” Ph.D. dissertation (Berlin Technical University, Berlin, 2000).

R. E. Vest, L. R. Canfield, “Photoemission from silicon photodiodes and induced changes in the detection efficiency in the far ultraviolet,” in Synchrotron Radiation Instrumentation: Tenth US National Conference, E. Fontes, ed., Vol. 417 of AIP Conference Proceedings (American Institute of Physics, New York, 1997), pp. 234–240.

T. Saito, H. Onuki, in TELL-TERAS Activity Report 1980–1986, T. Tomimasu, ed. (Electrotechnical Laboratory, Tsukuba, Japan, 1987), pp. 128–130.

R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 65th ed. (CRC Press, Boca Raton, Fla., 1984).

R. Gupta, K. R. Lykke, P. S. Shaw, J. L. Dehmer, “Characterization of UV-induced radiation damage in Si-based photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers, K. F. Dymond, eds., Proc. SPIE3818, 27–33 (1999).

International SEMATECH, International Technology Roadmap for Semiconductors (International SEMATECH, Austin, Texas, 2001).

U. Stamm, I. Bragin, S. V. Govorkov, J. Kleinschmidt, R. Pätzel, E. Slobodtchikov, K. Vogler, F. Vofl, D. Basting, “Excimer laser for 157-nm lithography,” in Emerging Lithographic Technologies III,Y. Vladimirsky, ed., Proc. SPIE3676, 816–826 (1999).

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2 lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for the measurement of radiant laser power at 157 nm by combination of a F2 laser with the SYRES II cryogenic electrical substitution radiometer.

Fig. 2
Fig. 2

Measured spectral responsivities of various photodetectors: (a) IRD AXUV100, (b) IRD UVG100, (c) ETH PtSi100, (d) APA AlGaN, (e) EPIGAP EP-440-36S, (f) Centronic diamond detector, (g) IRD SXUV100.

Fig. 3
Fig. 3

Relative change of spectral responsivity normalized to applied total dose after long-term exposure to F2 laser radiation for several photodetectors: 1, ETH PtSi100, 2, IRD SXUV100, 3, EPIGAP EP-440-36S, 4, APA AlGaN, 5, IRD UVG100 (I), (6) Centronic diamond detector, (7) IRD UVG100 (II), (8) IRD AXUV100.

Fig. 4
Fig. 4

Peak photocurrent of an ETH PtSi100 standard detector at 157 nm (no bias voltage applied) as a function of peak irradiance, measured by use of spectrally dispersed synchrotron radiation (data point at 9 × 10-4 W cm-2) and F2 laser radiation.

Fig. 5
Fig. 5

Circuits for operation of an ETH PtSi100 Schottky-type photodiode: (a) short-circuit mode and measurement of the negative electron current at ∅V bias, (b) application of a bias voltage (-15 V) in the reverse direction of the photodiode and measurement of the negative electron current, (c) measurement of the positive current of electron-hole states with and without the -15-V offset voltage.

Fig. 6
Fig. 6

Spectral responsivity (spectr. resp.) of an ETH PtSi100 Schottky-type photodiode (a) with a bias voltage of -15 V applied, according to Fig. 5(b), normalized to the spectral responsivity without bias voltage [Fig. 5(a)], and (b) when the negative electron current is measured in the short-circuit mode without bias voltage, according to Fig. 5(a).

Fig. 7
Fig. 7

(a) Signal of an ETH PtSi100 photodiode when the positive photocurrent of electron-hole states is measured according to Fig. 5(c) and an offset voltage of -15 V is applied, normalized to the magnitude of the negative signal [Fig. 5(a)]. (b) Yield for photoelectron emission from the surface of an ETH PtSi100 photodiode.

Tables (2)

Tables Icon

Table 1 Characteristics of Synchrotron and F2 Laser Radiation Used for Calibrations at a Wavelength of 157 nm

Tables Icon

Table 2 Results of Calibration of an Ophir PE10 Pyroelectric Laser Powermetera

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

peak irradiance = average radiant powerpulse frequency × pulse duration × irradiated area,
peak photocurrent = peak irradiance × spectral responsivity × irradiated area.
Q.Y.=ωes-I+I--1,

Metrics