Abstract

The optical trapping properties of dual-component spheres consisting of a cocentered outer transparent dielectric spherical shell and internal solid sphere are examined on the basis of the enhanced ray optics model. It is shown that stable trapping can occur on axis, off axis, or at multiple axial positions and depends on the dual-sphere and laser beam parameters. Computation results are also presented for an internal reflecting sphere surrounded by an outer dielectric spherical shell.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  3. R. C. Gauthier, A. Frangioudakis, “Theoretical investigation of the optical trapping properties of a micro-optic cubic glass structure,” Appl. Opt. 39, 3060–3070 (2000).
    [CrossRef]
  4. L. W. Casperson, C. Yeh, W. F. Yeung, “Single particle scattering with focused laser beams,” Appl. Opt. 16, 1104–1107 (1977).
    [PubMed]
  5. J. Mervis, A. H. Bloom, G. Bravo, L. Mills, F. Zarinetchi, M. Prentis, “Aligning and attaching a lens to an optical fiber using light pressure force,” Opt. Lett. 18, 325–327 (1993).
    [CrossRef] [PubMed]
  6. K. Taguchi, H. Ueno, T. Hiramatsu, M. Ikeda, “Optical trapping of dielectric particle and biological cell using optical fibre,” Electron. Lett. 33, 413–414 (1997).
    [CrossRef]
  7. S. Sugiura, N. Kobayakawa, H. Fujita, S. Momomura, M. Omata, “Direct characterization of single molecular kinetics of cardiac myosin in vitro,” Heart Vessels 12, 97–99 (1997).
    [PubMed]
  8. R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
    [CrossRef] [PubMed]
  9. E. Sidick, S. D. Collins, A. Knowswn, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt. 36, 6423–6433 (1997).
    [CrossRef]
  10. R. C. Gauthier, S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” Appl. Opt. 12, 1680–1686 (1995).
  11. W. H. Wright, G. J. Sonek, W. M. Berns, “Parametic study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
    [CrossRef] [PubMed]
  12. G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–195 (1977).
    [CrossRef]
  13. S. Nemoto, H. Togo, “Axial force acting on a dielectric sphere in a focused laser beam,” Appl. Opt. 37, 6386–6394 (1998).
    [CrossRef]
  14. W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
    [CrossRef]
  15. S. D. Collins, R. J. Baskin, D. G. Howitt, “Microinstrument gradient force optical trap,” Appl. Opt. 38, 6068–6074 (1999).
    [CrossRef]
  16. S. Sato, H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum. Electron. 28, 1–16 (1996).
    [CrossRef]
  17. H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
    [CrossRef]
  18. T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
    [CrossRef]
  19. K. F. Ren, G. Grehan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorentz-Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
    [CrossRef] [PubMed]
  20. R. C. Gauthier, A. Frangioudakis, “Optical levitation particle delivery system for a dual beam fiber optic trap,” Appl. Opt. 39, 26–33 (2000).
    [CrossRef]
  21. R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused, lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B 14, 782–789 (1997).
    [CrossRef]
  22. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997).
    [CrossRef]
  23. R. C. Gauthier, M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6430 (1998).
    [CrossRef]
  24. R. C. Gauthier, R. N. Tait, H. Mende, C. Palowicz, “Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical-electromechanical systems,” Appl. Opt. 40, 930–937 (2001).
    [CrossRef]
  25. R. C. Gauthier, R. N. Tait, M. Ubriaco, “Activation of microcomponents with light for micro-electro-mechanical systems and micro-optical-electro-mechanical systems applications,” Appl. Opt. 41, 2361–2367 (2002).
    [CrossRef] [PubMed]
  26. S. C. Grover, R. C. Gauthier, A. G. Skirtach, “Analysis of the behavior of erythrocytes in an optical trapping system,” Opt. Express 7, 533–539 (2000).
    [CrossRef] [PubMed]
  27. R. C. Gauthier, M. Ashman, A. Frangioudakis, H. Mende, S. Ma, “Radiation-pressure-based cylindrically shaped micro-actuator capable of smooth, continuous, reversible, and stepped rotation,” Appl. Opt. 38, 4850–4860 (1999).
    [CrossRef]
  28. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [CrossRef] [PubMed]
  29. N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [CrossRef] [PubMed]
  30. S. Sato, Y. Harada, Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
    [CrossRef] [PubMed]

2002 (1)

2001 (1)

2000 (3)

1999 (2)

1998 (2)

1997 (6)

1996 (3)

1995 (1)

R. C. Gauthier, S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” Appl. Opt. 12, 1680–1686 (1995).

1994 (2)

1993 (2)

J. Mervis, A. H. Bloom, G. Bravo, L. Mills, F. Zarinetchi, M. Prentis, “Aligning and attaching a lens to an optical fiber using light pressure force,” Opt. Lett. 18, 325–327 (1993).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[CrossRef]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

1991 (2)

H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

1986 (1)

1977 (2)

L. W. Casperson, C. Yeh, W. F. Yeung, “Single particle scattering with focused laser beams,” Appl. Opt. 16, 1104–1107 (1977).
[PubMed]

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–195 (1977).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Allen, L.

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Ashman, M.

Baskin, R. J.

Berns, M. W.

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[CrossRef]

Berns, W. M.

Bjorkholm, J. E.

Bloom, A. H.

Bravo, G.

Casperson, L. W.

Chu, S.

Collins, S. D.

de Grooth, B. G.

R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
[CrossRef] [PubMed]

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

Dholakia, K.

Doornbos, R. M. P.

Dziedzic, J. M.

Frangioudakis, A.

Fujita, H.

S. Sugiura, N. Kobayakawa, H. Fujita, S. Momomura, M. Omata, “Direct characterization of single molecular kinetics of cardiac myosin in vitro,” Heart Vessels 12, 97–99 (1997).
[PubMed]

Gauthier, R. C.

R. C. Gauthier, R. N. Tait, M. Ubriaco, “Activation of microcomponents with light for micro-electro-mechanical systems and micro-optical-electro-mechanical systems applications,” Appl. Opt. 41, 2361–2367 (2002).
[CrossRef] [PubMed]

R. C. Gauthier, R. N. Tait, H. Mende, C. Palowicz, “Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical-electromechanical systems,” Appl. Opt. 40, 930–937 (2001).
[CrossRef]

R. C. Gauthier, A. Frangioudakis, “Optical levitation particle delivery system for a dual beam fiber optic trap,” Appl. Opt. 39, 26–33 (2000).
[CrossRef]

S. C. Grover, R. C. Gauthier, A. G. Skirtach, “Analysis of the behavior of erythrocytes in an optical trapping system,” Opt. Express 7, 533–539 (2000).
[CrossRef] [PubMed]

R. C. Gauthier, A. Frangioudakis, “Theoretical investigation of the optical trapping properties of a micro-optic cubic glass structure,” Appl. Opt. 39, 3060–3070 (2000).
[CrossRef]

R. C. Gauthier, M. Ashman, A. Frangioudakis, H. Mende, S. Ma, “Radiation-pressure-based cylindrically shaped micro-actuator capable of smooth, continuous, reversible, and stepped rotation,” Appl. Opt. 38, 4850–4860 (1999).
[CrossRef]

R. C. Gauthier, M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6430 (1998).
[CrossRef]

R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused, lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B 14, 782–789 (1997).
[CrossRef]

R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997).
[CrossRef]

R. C. Gauthier, S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” Appl. Opt. 12, 1680–1686 (1995).

Gouesbet, G.

Grehan, G.

Greve, J.

R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
[CrossRef] [PubMed]

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

Grover, S. C.

Harada, Y.

Hesselink, G.

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

Hiramatsu, T.

K. Taguchi, H. Ueno, T. Hiramatsu, M. Ikeda, “Optical trapping of dielectric particle and biological cell using optical fibre,” Electron. Lett. 33, 413–414 (1997).
[CrossRef]

Hoekstra, A. G.

Howitt, D. G.

Ikeda, M.

K. Taguchi, H. Ueno, T. Hiramatsu, M. Ikeda, “Optical trapping of dielectric particle and biological cell using optical fibre,” Electron. Lett. 33, 413–414 (1997).
[CrossRef]

Inaba, H.

S. Sato, H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum. Electron. 28, 1–16 (1996).
[CrossRef]

Kitamura, N.

H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
[CrossRef]

Knowswn, A.

Kobayakawa, N.

S. Sugiura, N. Kobayakawa, H. Fujita, S. Momomura, M. Omata, “Direct characterization of single molecular kinetics of cardiac myosin in vitro,” Heart Vessels 12, 97–99 (1997).
[PubMed]

Ma, S.

Masuhara, H.

H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
[CrossRef]

Mende, H.

Mervis, J.

Mills, L.

Misawa, H.

H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
[CrossRef]

Momomura, S.

S. Sugiura, N. Kobayakawa, H. Fujita, S. Momomura, M. Omata, “Direct characterization of single molecular kinetics of cardiac myosin in vitro,” Heart Vessels 12, 97–99 (1997).
[PubMed]

Nemoto, S.

Omata, M.

S. Sugiura, N. Kobayakawa, H. Fujita, S. Momomura, M. Omata, “Direct characterization of single molecular kinetics of cardiac myosin in vitro,” Heart Vessels 12, 97–99 (1997).
[PubMed]

Padgett, M. J.

Palowicz, C.

Prentis, M.

Ren, K. F.

Roosen, G.

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–195 (1977).
[CrossRef]

Sato, S.

S. Sato, H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum. Electron. 28, 1–16 (1996).
[CrossRef]

S. Sato, Y. Harada, Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
[CrossRef] [PubMed]

Schaeffer, M.

Schut, T. C. B.

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

Sidick, E.

Simpson, N. B.

Skirtach, A. G.

Sloot, P. M. A.

Sonek, G. J.

W. H. Wright, G. J. Sonek, W. M. Berns, “Parametic study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[CrossRef]

Sugiura, S.

S. Sugiura, N. Kobayakawa, H. Fujita, S. Momomura, M. Omata, “Direct characterization of single molecular kinetics of cardiac myosin in vitro,” Heart Vessels 12, 97–99 (1997).
[PubMed]

Taguchi, K.

K. Taguchi, H. Ueno, T. Hiramatsu, M. Ikeda, “Optical trapping of dielectric particle and biological cell using optical fibre,” Electron. Lett. 33, 413–414 (1997).
[CrossRef]

Tait, R. N.

Togo, H.

Ubriaco, M.

Ueno, H.

K. Taguchi, H. Ueno, T. Hiramatsu, M. Ikeda, “Optical trapping of dielectric particle and biological cell using optical fibre,” Electron. Lett. 33, 413–414 (1997).
[CrossRef]

Wallace, S.

R. C. Gauthier, S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” Appl. Opt. 12, 1680–1686 (1995).

Waseda, Y.

Wright, W. H.

W. H. Wright, G. J. Sonek, W. M. Berns, “Parametic study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[CrossRef]

Yeh, C.

Yeung, W. F.

Zarinetchi, F.

Appl. Opt. (14)

R. C. Gauthier, A. Frangioudakis, “Theoretical investigation of the optical trapping properties of a micro-optic cubic glass structure,” Appl. Opt. 39, 3060–3070 (2000).
[CrossRef]

L. W. Casperson, C. Yeh, W. F. Yeung, “Single particle scattering with focused laser beams,” Appl. Opt. 16, 1104–1107 (1977).
[PubMed]

R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
[CrossRef] [PubMed]

E. Sidick, S. D. Collins, A. Knowswn, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt. 36, 6423–6433 (1997).
[CrossRef]

R. C. Gauthier, S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” Appl. Opt. 12, 1680–1686 (1995).

W. H. Wright, G. J. Sonek, W. M. Berns, “Parametic study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[CrossRef] [PubMed]

S. Nemoto, H. Togo, “Axial force acting on a dielectric sphere in a focused laser beam,” Appl. Opt. 37, 6386–6394 (1998).
[CrossRef]

S. D. Collins, R. J. Baskin, D. G. Howitt, “Microinstrument gradient force optical trap,” Appl. Opt. 38, 6068–6074 (1999).
[CrossRef]

K. F. Ren, G. Grehan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorentz-Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[CrossRef] [PubMed]

R. C. Gauthier, A. Frangioudakis, “Optical levitation particle delivery system for a dual beam fiber optic trap,” Appl. Opt. 39, 26–33 (2000).
[CrossRef]

R. C. Gauthier, M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6430 (1998).
[CrossRef]

R. C. Gauthier, R. N. Tait, H. Mende, C. Palowicz, “Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical-electromechanical systems,” Appl. Opt. 40, 930–937 (2001).
[CrossRef]

R. C. Gauthier, R. N. Tait, M. Ubriaco, “Activation of microcomponents with light for micro-electro-mechanical systems and micro-optical-electro-mechanical systems applications,” Appl. Opt. 41, 2361–2367 (2002).
[CrossRef] [PubMed]

R. C. Gauthier, M. Ashman, A. Frangioudakis, H. Mende, S. Ma, “Radiation-pressure-based cylindrically shaped micro-actuator capable of smooth, continuous, reversible, and stepped rotation,” Appl. Opt. 38, 4850–4860 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

Cytometry (1)

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

Electron. Lett. (1)

K. Taguchi, H. Ueno, T. Hiramatsu, M. Ikeda, “Optical trapping of dielectric particle and biological cell using optical fibre,” Electron. Lett. 33, 413–414 (1997).
[CrossRef]

Heart Vessels (1)

S. Sugiura, N. Kobayakawa, H. Fujita, S. Momomura, M. Omata, “Direct characterization of single molecular kinetics of cardiac myosin in vitro,” Heart Vessels 12, 97–99 (1997).
[PubMed]

J. Am. Chem. Soc. (1)

H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–195 (1977).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Opt. Quantum. Electron. (1)

S. Sato, H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum. Electron. 28, 1–16 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Geometry of the optical trapping configuration between the dual-component sphere and the z-directed laser beam. Gravity acts in the negative z direction. The sphere’s center is contained in the (x, y, 0) plane, and the radial offset distance between the sphere’s center and the beam axis is r. The laser beam’s minimum waist coincides with the coordinate system’s origin.

Fig. 2
Fig. 2

Radial trapping force for a 5-µm, 1.45-refractive-index sphere in water versus radial offset and beam waist. The radial force acts to align the sphere’s center with the beam-propagation axis.

Fig. 3
Fig. 3

Radial force for a 5-µm reflecting sphere in water versus radial offset and beam waist. The radial force acts to push the reflecting sphere out of the beam.

Fig. 4
Fig. 4

Radial force for a 5-µm sphere containing a 1-µm centered air bubble versus radial offset and beam waist. Stable off-axis and on-axis radial trapping is possible and depends on the beam waist. The inset shows that the radial trapping force has taken over the (x, y) grid for a beam waist of 1.0 µm and demonstrates that the stable offset radial position corresponds to a stable ring about the coordinate center.

Fig. 5
Fig. 5

Radial force versus radial offset and spherical shell’s index of refraction for a 5-µm sphere with a 1-µm air bubble at the center. Features of the curve are described in the text.

Fig. 6
Fig. 6

Radial force for a 5-µm sphere containing a 3-µm centered air bubble versus radial offset and beam waist. Stable off-axis radial trapping is possible, whereas on-axis trapping is not. The inset shows that the radial trapping force has taken over the (x, y) grid for a beam waist of 1.0 µm and demonstrates that the stable offset radial position corresponds to a stable ring about the coordinate center.

Fig. 7
Fig. 7

Radial force versus radial offset and beam waist for a 5-µm spherical shell of 1.45 refractive index that contains a 3-µm centered sphere of 1.4 refractive index. Two radial stable trapping positions are observed for small beam waists.

Fig. 8
Fig. 8

Radial force versus radial offset and beam waist for a 4.75-µm centered air bubble in a 5-µm, 1.45-index spherical shell. No stable radial trapping is possible for the parameters selected.

Fig. 9
Fig. 9

Radial force versus radial offset and beam waist for a 4.75-µm centered air bubble in a 5-µm, 1.33-index spherical shell. These parameters are equivalent to a 4.75-µm air bubble in water. No radial trapping is possible for the parameters selected.

Fig. 10
Fig. 10

Radial force versus radial offset and beam waist when the sphere’s index (1.35) is greater then the ambient medium’s index (1.33) and for a shell’s index of 1.45. The sphere has a radius of 4.75 µm, and the shell has a radius of 5 µm. For these parameters, stable radial trapping is possible, provided that the sphere is launched with enough energy to overcome the repulsive radial force barrier present when large radial offsets are present.

Fig. 11
Fig. 11

Radial force versus radial offset and beam waist. The internal sphere has a 3-µm radius and 1.45 index of refraction. The shell has an index of 1.00 and a radius of 5 µm. Radial trapping is accomplished through the presence of the high-index sphere in the low-index shell.

Fig. 12
Fig. 12

Radial force versus radial offset and beam waist. The parameters are such that the dual-component sphere is equivalent to having a single high-index sphere of 3-µm radius subjected to the laser beam.

Fig. 13
Fig. 13

Radial force versus beam waist and radial offset for a shell’s index of 1.40 and lies between the values of the ambient medium (1.33) and internal shell (1.45). Dual minimums are observed in the radial force for small beam waists.

Fig. 14
Fig. 14

Radial force versus radial offset and beam waist for a shell’s index of 1.60, which is greater than the internal sphere’s index of 1.45 in a water ambient medium’s index of 1.33. The dual stable trapping features of this index-radii combination are more prominent. For large beam waists, a single stable radial trapping position is observed. For beam waists between 2 and 3 µm, stable radial trapping is possible only when a radial offset is present. For beam waists below 2 µm, dual radial stable trap positions are possible.

Fig. 15
Fig. 15

Radial force versus radial offset and beam waist for a 1-µm reflecting sphere internal to the 5-µm-radius, 1.00-refractive-index shell. The kink present for small beam waists and radial offsets results when the majority of the photons in the beam is reflected from the metallic surface.

Fig. 16
Fig. 16

Radial force versus radial offset and beam waist for a 3-µm reflecting sphere internal to the 5-µm-radius, 1.00-refractive-index shell. Dual maximums in the radial force are observed when photons are reflected strongly from the sphere and highly refracted from the low-index shell.

Fig. 17
Fig. 17

Radial force versus radial offset and beam waist for a 4.5-µm reflecting sphere internal to the 5-µm-radius, 1.00-refractive-index shell. The radial force properties are dominated by the metallic sphere, and no stable radial trapping is possible.

Fig. 18
Fig. 18

Radial force versus radial offset and beam waist for a 1-µm reflecting sphere internal to the 5-µm-radius, 1.45-refractive-index shell. Comparison with Fig. 4 indicates that the 1-µm reflecting sphere influences the radial force in a manner similar to the low-index internal sphere.

Fig. 19
Fig. 19

Radial force versus radial offset and beam waist for a 3-µm reflecting sphere internal to the 5-µm-radius, 1.45-refractive-index shell. Stable axial trapping is no longer possible for these system parameters.

Fig. 20
Fig. 20

Radial force versus radial offset and beam waist for a 4.5-µm reflecting sphere internal to the 5-µm-radius, 1.45-refractive-index shell. Radial force properties are dominated by the reflecting internal sphere.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

x2=x1+lbs, y2=y1+mbs, z2=z1+nbs,
rr=2ri · nˆnˆ+ri,
rt=ninnout-1ri · nˆnˆ+ninnoutri,
R=RTE+RTM2, T=1-R,
RTE=nin cosθin-nout cosθoutnin cosθin+nout cosθout2, RTM=nout cosθin-nin cosθoutnout cosθin+nin cosθout2,
cosθin=|lbli+mbmi+nbni|, cosθout=|ltli+mtmi+nbni|,
dPr=hλo ninlr-lb, mr-mb, nr-nb,
dPt=hλo ninnoutnin lt-lb, noutnin mt-mb, noutnin nt-nb,
N=Ixi, yi, zidAEph,
Ixi, yi, zi=2PπWz2exp-2xi2+yi2Wz2.
dF=NRdPr+TdPt,
F=Fg+ dF.
τ= dτ= r×dF.
xt+dt=xt+vxtdt, yt+dt=yt+vytdt, zt+dt=zt+vztdt,
vxt+dt=vxt+Fx-bxvxtmdt, vyt+dt=vyt+Fy-byvytmdt, vzt+dt=vzt+Fz-bzvztmdt.
2θtt2+bτIθt+kτθ-τI=0,

Metrics