Abstract

Optical extinction spectra for particles of structurally disordered carbonaceous material (carbon black, soot) are discussed in terms of the effects of size and shape and the difference between coagulated and coalesced particles. For this purpose, the orientation-averaged specific extinction for several compact and open aggregates of spherical particles is calculated and compared with the specific extinction by homogeneous particles, i.e., volume-equivalent spheres and elongated spheroids. The extinction spectra are calculated for wavelengths from 0.2 to 1000 µm by use of the optical constants for the carbonaceous materials of Jäger et al. [Astron. Astrophys. 332, 291 (1998)] and Schnaiter et al. [Astrophys. J. 498, 486 (1998)]. Comparisons with the model case of particles composed of graphite and with measurements of diesel soot aerosols are made.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Henning, F. Salama, “Carbon in the universe,” Science 282, 2204–2210 (1998).
    [CrossRef] [PubMed]
  2. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, San Diego, Calif., 2000).
  3. R. Stognienko, Th. Henning, V. Ossenkopf, “Optical properties of coagulated particles,” Astron. Astrophys. 296, 797–809 (1995).
  4. T. P. Stecher, “Interstellar extinction in the ultraviolet,” Astrophys. J. 142, 1683–1684 (1965).
    [CrossRef]
  5. E. L. Fitzpatrick, D. Massa, “An analysis of the shapes of ultraviolet extinction curves. I. The 2175 Å bump,” Astrophys. J. 307, 286–294 (1986).
    [CrossRef]
  6. F. Rouleau, Th. Henning, R. Stognienko, “Constraints on the properties of the 2175 Å interstellar feature carrier,” Astron. Astrophys. 322, 633–645 (1997).
  7. M. Schnaiter, H. Mutschke, J. Dorschner, Th. Henning, F. Salama, “Matrix-isolated nanosized carbon grains as an analog for the 2175 nm feature carrier,” Astrophys. J. 498, 486–496 (1998).
    [CrossRef]
  8. C. Jäger, H. Mutschke, Th. Henning, “Optical properties of carbonaceous dust analogues,” Astron. Astrophys. 332, 291–299 (1998).
  9. B. T. Draine, “Tabulated optical properties of graphite and silicate grains,” Astrophys. J. Suppl. Ser. 57, 587–594 (1985).
    [CrossRef]
  10. V. G. Zubko, V. Mennella, L. Colangeli, E. Bussoletti, “Optical constants of cosmic carbon analogue grains. I. Simulation of clustering by a modified continuous distribution of ellipsoids,” Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996).
    [CrossRef]
  11. E. A. Taft, H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138, A197–A202 (1965).
    [CrossRef]
  12. H. R. Philipp, “Infrared optical properties of graphite,” Phys. Rev. B 16, 2896–2900 (1977).
    [CrossRef]
  13. B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984).
    [CrossRef]
  14. A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999).
    [CrossRef]
  15. Th. Henning, V. B. Il’in, N. A. Krivova, B. Michel, N. V. Voshchinnikov, “WWW—database of optical constants for astronomy,” Astron. Astrophys. Suppl. Ser. 136, 405–406 (1999), available at www.astro.uni-jena.de .
    [CrossRef]
  16. B. Michel, Th. Henning, C. Jäger, U. Kreibig, “Optical extinction by spherical carbonaceous particles,” Carbon 37, 391–400 (1999).
    [CrossRef]
  17. B. Michel, Th. Henning, R. Stognienko, F. Rouleau, “Extinction properties of dust grains: a new computational technique,” Astrophys. J. 468, 834–841 (1996).
    [CrossRef]
  18. J. Blum, G. Wurm, “Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates,” Icarus 143, 138–146 (2000).
    [CrossRef]
  19. J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
    [CrossRef] [PubMed]
  20. P. Chýlek, V. Ramaswamy, “Lower and upper bounds on extinction cross sections of arbitrarily shaped strongly absorbing or strongly reflecting nonspherical particles,” Appl. Opt. 21, 4339–4344 (1982).
    [CrossRef] [PubMed]
  21. B. L. Drolen, C. L. Tien, “Absorption and scattering of agglomerated soot particulates,” J. Quant. Spectrosc. Radiat. Transfer 37, 433–448 (1987).
    [CrossRef]
  22. J. C. Ku, K. H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
    [CrossRef]
  23. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  24. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  25. W. Trinks, “Zur Vielfachstreuung an kleinen Kugeln,” Ann. Phys. (Leipzig) 22, 561–590 (1935).
  26. C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).
  27. F. Borghese, P. Denti, G. Toscano, O. I. Sindoni, “Electromagnetic scattering by a cluster of spheres,” Appl. Opt. 18, 116–120 (1979).
    [CrossRef] [PubMed]
  28. J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982).
    [CrossRef]
  29. K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I. Linear chains,” Opt. Lett. 13, 90–92 (1988).
    [CrossRef]
  30. K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. II. Clusters of arbitrary configuration,” Opt. Lett. 13, 1063–1065 (1988).
    [CrossRef] [PubMed]
  31. A.-K. Hamid, I. R. Ciric, M. Hamid, “Multiple scattering by a linear array of conducting spheres,” Can. J. Phys. 68, 1157–1165 (1990).
    [CrossRef]
  32. A.-K. Hamid, I. R. Ciric, M. Hamid, “Electromagnetic scattering by an arbitrary configuration of dielectric spheres,” Can. J. Phys. 68, 1419–1428 (1990).
    [CrossRef]
  33. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
    [CrossRef]
  34. W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1994).
    [CrossRef]
  35. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
    [CrossRef]
  36. Y. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995).
    [CrossRef] [PubMed]
  37. F. Rouleau, “Electromagnetic scattering by compact clusters of spheres,” Astron. Astrophys. 310, 686–698 (1996).
  38. M. Quinten, U. Kreibig, “Optical extinction spectra of systems of small metal particles with aggregates,” in Optical Particle Sizing, G. Gouesbet, G. Grehan, eds. (Plenum, New York, 1988), pp. 247–258.
  39. M. Quinten, D. Schönauer, U. Kreibig, “Electronic excitations in many-particle systems: a quantitative analysis,” Z. Phys. D 12, 521–525 (1989).
    [CrossRef]
  40. T. Kahlau, M. Quinten, U. Kreibig, “Extinction and angle-resolved light scattering from aggregated metal clusters,” Appl. Phys. A 62, 19–27 (1996).
    [CrossRef]
  41. M. Quinten, A. Heilmann, A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B 68, 707–712 (1999).
    [CrossRef]
  42. A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999).
    [CrossRef]
  43. M. Quinten, U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt. 32, 6173–6182 (1993).
    [CrossRef] [PubMed]
  44. M. Quinten, “Optical response of aggregates of clusters with different dielectric functions,” Appl. Phys. B 67, 101–106 (1998).
    [CrossRef]
  45. W. J. Wiscombe, “Mie scattering calculations: advances in techniques and fast vector-speed computer codes,” internal report (National Center for Atmospheric Research, Boulder, Colo., 1979).
  46. V. A. Markel, V. M. Shalaev, T. F. George, “Some theoretical and numerical approaches to the optics of fractal smoke,” in Optics of Nanostructured Materials, V. A. Markel, T. F. George, eds. (Wiley, New York, 2001), pp. 355–411.
  47. R. Gans, “Über die Form ultramikroskopischer Teilchen,” Ann. Phys. (Leipzig) 37, 881–900 (1912).
  48. N. V. Voshchinnikov, V. B. Il’in, Th. Henning, B. Michel, V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877–893 (2000).
    [CrossRef]
  49. B. T. Draine, S. Malhotra, “On graphite and the 2175 A extinction profile,” Astrophys. J. 414, 632–645 (1993).
    [CrossRef]
  50. C. Jäger, Th. Henning, R. Schlögl, O. Spillecke, “Spectral properties of carbon black,” J. Non-Cryst. Solids 258, 161–179 (1999).
    [CrossRef]
  51. J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long-wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
    [CrossRef]
  52. C. W. Bruce, T. F. Stromberg, K. P. Gurton, J. B. Mozer, “Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot,” Appl. Opt. 30, 1537–1546 (1991).
    [CrossRef] [PubMed]
  53. D. C. Whittet, Dust in the Galactic Environment (Institute of Physics, Bristol, UK, 1992).
  54. P. E. Johnson, “Grain alignment in the galactic magnetic field,” Nature 295, 371–375 (1982).
    [CrossRef]
  55. O. Fischer, “Polarization by interstellar dust—modelling and interpretation of polarization maps,” Rev. Mod. Astron. 8, 103–124 (1995).

2000 (3)

J. Blum, G. Wurm, “Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates,” Icarus 143, 138–146 (2000).
[CrossRef]

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

N. V. Voshchinnikov, V. B. Il’in, Th. Henning, B. Michel, V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877–893 (2000).
[CrossRef]

1999 (6)

M. Quinten, A. Heilmann, A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B 68, 707–712 (1999).
[CrossRef]

A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999).
[CrossRef]

A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999).
[CrossRef]

Th. Henning, V. B. Il’in, N. A. Krivova, B. Michel, N. V. Voshchinnikov, “WWW—database of optical constants for astronomy,” Astron. Astrophys. Suppl. Ser. 136, 405–406 (1999), available at www.astro.uni-jena.de .
[CrossRef]

B. Michel, Th. Henning, C. Jäger, U. Kreibig, “Optical extinction by spherical carbonaceous particles,” Carbon 37, 391–400 (1999).
[CrossRef]

C. Jäger, Th. Henning, R. Schlögl, O. Spillecke, “Spectral properties of carbon black,” J. Non-Cryst. Solids 258, 161–179 (1999).
[CrossRef]

1998 (4)

Th. Henning, F. Salama, “Carbon in the universe,” Science 282, 2204–2210 (1998).
[CrossRef] [PubMed]

M. Schnaiter, H. Mutschke, J. Dorschner, Th. Henning, F. Salama, “Matrix-isolated nanosized carbon grains as an analog for the 2175 nm feature carrier,” Astrophys. J. 498, 486–496 (1998).
[CrossRef]

C. Jäger, H. Mutschke, Th. Henning, “Optical properties of carbonaceous dust analogues,” Astron. Astrophys. 332, 291–299 (1998).

M. Quinten, “Optical response of aggregates of clusters with different dielectric functions,” Appl. Phys. B 67, 101–106 (1998).
[CrossRef]

1997 (1)

F. Rouleau, Th. Henning, R. Stognienko, “Constraints on the properties of the 2175 Å interstellar feature carrier,” Astron. Astrophys. 322, 633–645 (1997).

1996 (4)

V. G. Zubko, V. Mennella, L. Colangeli, E. Bussoletti, “Optical constants of cosmic carbon analogue grains. I. Simulation of clustering by a modified continuous distribution of ellipsoids,” Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996).
[CrossRef]

B. Michel, Th. Henning, R. Stognienko, F. Rouleau, “Extinction properties of dust grains: a new computational technique,” Astrophys. J. 468, 834–841 (1996).
[CrossRef]

T. Kahlau, M. Quinten, U. Kreibig, “Extinction and angle-resolved light scattering from aggregated metal clusters,” Appl. Phys. A 62, 19–27 (1996).
[CrossRef]

F. Rouleau, “Electromagnetic scattering by compact clusters of spheres,” Astron. Astrophys. 310, 686–698 (1996).

1995 (3)

R. Stognienko, Th. Henning, V. Ossenkopf, “Optical properties of coagulated particles,” Astron. Astrophys. 296, 797–809 (1995).

O. Fischer, “Polarization by interstellar dust—modelling and interpretation of polarization maps,” Rev. Mod. Astron. 8, 103–124 (1995).

Y. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995).
[CrossRef] [PubMed]

1994 (2)

D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
[CrossRef]

W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1994).
[CrossRef]

1993 (2)

M. Quinten, U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt. 32, 6173–6182 (1993).
[CrossRef] [PubMed]

B. T. Draine, S. Malhotra, “On graphite and the 2175 A extinction profile,” Astrophys. J. 414, 632–645 (1993).
[CrossRef]

1992 (1)

J. C. Ku, K. H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

1991 (2)

1990 (2)

A.-K. Hamid, I. R. Ciric, M. Hamid, “Multiple scattering by a linear array of conducting spheres,” Can. J. Phys. 68, 1157–1165 (1990).
[CrossRef]

A.-K. Hamid, I. R. Ciric, M. Hamid, “Electromagnetic scattering by an arbitrary configuration of dielectric spheres,” Can. J. Phys. 68, 1419–1428 (1990).
[CrossRef]

1989 (1)

M. Quinten, D. Schönauer, U. Kreibig, “Electronic excitations in many-particle systems: a quantitative analysis,” Z. Phys. D 12, 521–525 (1989).
[CrossRef]

1988 (2)

1987 (1)

B. L. Drolen, C. L. Tien, “Absorption and scattering of agglomerated soot particulates,” J. Quant. Spectrosc. Radiat. Transfer 37, 433–448 (1987).
[CrossRef]

1986 (1)

E. L. Fitzpatrick, D. Massa, “An analysis of the shapes of ultraviolet extinction curves. I. The 2175 Å bump,” Astrophys. J. 307, 286–294 (1986).
[CrossRef]

1985 (1)

B. T. Draine, “Tabulated optical properties of graphite and silicate grains,” Astrophys. J. Suppl. Ser. 57, 587–594 (1985).
[CrossRef]

1984 (1)

B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984).
[CrossRef]

1982 (3)

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982).
[CrossRef]

P. E. Johnson, “Grain alignment in the galactic magnetic field,” Nature 295, 371–375 (1982).
[CrossRef]

P. Chýlek, V. Ramaswamy, “Lower and upper bounds on extinction cross sections of arbitrarily shaped strongly absorbing or strongly reflecting nonspherical particles,” Appl. Opt. 21, 4339–4344 (1982).
[CrossRef] [PubMed]

1980 (1)

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long-wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
[CrossRef]

1979 (1)

1977 (1)

H. R. Philipp, “Infrared optical properties of graphite,” Phys. Rev. B 16, 2896–2900 (1977).
[CrossRef]

1967 (1)

C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).

1965 (2)

E. A. Taft, H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138, A197–A202 (1965).
[CrossRef]

T. P. Stecher, “Interstellar extinction in the ultraviolet,” Astrophys. J. 142, 1683–1684 (1965).
[CrossRef]

1935 (1)

W. Trinks, “Zur Vielfachstreuung an kleinen Kugeln,” Ann. Phys. (Leipzig) 22, 561–590 (1935).

1912 (1)

R. Gans, “Über die Form ultramikroskopischer Teilchen,” Ann. Phys. (Leipzig) 37, 881–900 (1912).

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).

Ausloos, M.

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982).
[CrossRef]

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long-wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
[CrossRef]

Blum, J.

J. Blum, G. Wurm, “Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates,” Icarus 143, 138–146 (2000).
[CrossRef]

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Borghese, F.

Bruce, C. W.

Bussoletti, E.

V. G. Zubko, V. Mennella, L. Colangeli, E. Bussoletti, “Optical constants of cosmic carbon analogue grains. I. Simulation of clustering by a modified continuous distribution of ellipsoids,” Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996).
[CrossRef]

Charalampopoulos, T. T.

W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1994).
[CrossRef]

Chýlek, P.

Ciric, I. R.

A.-K. Hamid, I. R. Ciric, M. Hamid, “Multiple scattering by a linear array of conducting spheres,” Can. J. Phys. 68, 1157–1165 (1990).
[CrossRef]

A.-K. Hamid, I. R. Ciric, M. Hamid, “Electromagnetic scattering by an arbitrary configuration of dielectric spheres,” Can. J. Phys. 68, 1419–1428 (1990).
[CrossRef]

Colangeli, L.

V. G. Zubko, V. Mennella, L. Colangeli, E. Bussoletti, “Optical constants of cosmic carbon analogue grains. I. Simulation of clustering by a modified continuous distribution of ellipsoids,” Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996).
[CrossRef]

Denti, P.

Djurisic, A. B.

A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999).
[CrossRef]

Dorschner, J.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

M. Schnaiter, H. Mutschke, J. Dorschner, Th. Henning, F. Salama, “Matrix-isolated nanosized carbon grains as an analog for the 2175 nm feature carrier,” Astrophys. J. 498, 486–496 (1998).
[CrossRef]

Draine, B. T.

B. T. Draine, S. Malhotra, “On graphite and the 2175 A extinction profile,” Astrophys. J. 414, 632–645 (1993).
[CrossRef]

B. T. Draine, “Tabulated optical properties of graphite and silicate grains,” Astrophys. J. Suppl. Ser. 57, 587–594 (1985).
[CrossRef]

B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984).
[CrossRef]

Drolen, B. L.

B. L. Drolen, C. L. Tien, “Absorption and scattering of agglomerated soot particulates,” J. Quant. Spectrosc. Radiat. Transfer 37, 433–448 (1987).
[CrossRef]

El Goresy, A.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Farafonov, V. G.

N. V. Voshchinnikov, V. B. Il’in, Th. Henning, B. Michel, V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877–893 (2000).
[CrossRef]

Fechtig, H.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Feuerbacher, B.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Fischer, O.

O. Fischer, “Polarization by interstellar dust—modelling and interpretation of polarization maps,” Rev. Mod. Astron. 8, 103–124 (1995).

Fitzpatrick, E. L.

E. L. Fitzpatrick, D. Massa, “An analysis of the shapes of ultraviolet extinction curves. I. The 2175 Å bump,” Astrophys. J. 307, 286–294 (1986).
[CrossRef]

Fuller, K. A.

Gans, R.

R. Gans, “Über die Form ultramikroskopischer Teilchen,” Ann. Phys. (Leipzig) 37, 881–900 (1912).

George, T. F.

V. A. Markel, V. M. Shalaev, T. F. George, “Some theoretical and numerical approaches to the optics of fractal smoke,” in Optics of Nanostructured Materials, V. A. Markel, T. F. George, eds. (Wiley, New York, 2001), pp. 355–411.

Gérardy, J. M.

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982).
[CrossRef]

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long-wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
[CrossRef]

Giovane, F.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Grün, E.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Gurton, K. P.

Gustafson, B. A.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Hamid, A.-K.

A.-K. Hamid, I. R. Ciric, M. Hamid, “Multiple scattering by a linear array of conducting spheres,” Can. J. Phys. 68, 1157–1165 (1990).
[CrossRef]

A.-K. Hamid, I. R. Ciric, M. Hamid, “Electromagnetic scattering by an arbitrary configuration of dielectric spheres,” Can. J. Phys. 68, 1419–1428 (1990).
[CrossRef]

Hamid, M.

A.-K. Hamid, I. R. Ciric, M. Hamid, “Electromagnetic scattering by an arbitrary configuration of dielectric spheres,” Can. J. Phys. 68, 1419–1428 (1990).
[CrossRef]

A.-K. Hamid, I. R. Ciric, M. Hamid, “Multiple scattering by a linear array of conducting spheres,” Can. J. Phys. 68, 1157–1165 (1990).
[CrossRef]

Heilmann, A.

M. Quinten, A. Heilmann, A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B 68, 707–712 (1999).
[CrossRef]

Henning, Th.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

N. V. Voshchinnikov, V. B. Il’in, Th. Henning, B. Michel, V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877–893 (2000).
[CrossRef]

C. Jäger, Th. Henning, R. Schlögl, O. Spillecke, “Spectral properties of carbon black,” J. Non-Cryst. Solids 258, 161–179 (1999).
[CrossRef]

Th. Henning, V. B. Il’in, N. A. Krivova, B. Michel, N. V. Voshchinnikov, “WWW—database of optical constants for astronomy,” Astron. Astrophys. Suppl. Ser. 136, 405–406 (1999), available at www.astro.uni-jena.de .
[CrossRef]

B. Michel, Th. Henning, C. Jäger, U. Kreibig, “Optical extinction by spherical carbonaceous particles,” Carbon 37, 391–400 (1999).
[CrossRef]

M. Schnaiter, H. Mutschke, J. Dorschner, Th. Henning, F. Salama, “Matrix-isolated nanosized carbon grains as an analog for the 2175 nm feature carrier,” Astrophys. J. 498, 486–496 (1998).
[CrossRef]

Th. Henning, F. Salama, “Carbon in the universe,” Science 282, 2204–2210 (1998).
[CrossRef] [PubMed]

C. Jäger, H. Mutschke, Th. Henning, “Optical properties of carbonaceous dust analogues,” Astron. Astrophys. 332, 291–299 (1998).

F. Rouleau, Th. Henning, R. Stognienko, “Constraints on the properties of the 2175 Å interstellar feature carrier,” Astron. Astrophys. 322, 633–645 (1997).

B. Michel, Th. Henning, R. Stognienko, F. Rouleau, “Extinction properties of dust grains: a new computational technique,” Astrophys. J. 468, 834–841 (1996).
[CrossRef]

R. Stognienko, Th. Henning, V. Ossenkopf, “Optical properties of coagulated particles,” Astron. Astrophys. 296, 797–809 (1995).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Il’in, V. B.

N. V. Voshchinnikov, V. B. Il’in, Th. Henning, B. Michel, V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877–893 (2000).
[CrossRef]

Th. Henning, V. B. Il’in, N. A. Krivova, B. Michel, N. V. Voshchinnikov, “WWW—database of optical constants for astronomy,” Astron. Astrophys. Suppl. Ser. 136, 405–406 (1999), available at www.astro.uni-jena.de .
[CrossRef]

Ip, W.-H.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Jäger, C.

C. Jäger, Th. Henning, R. Schlögl, O. Spillecke, “Spectral properties of carbon black,” J. Non-Cryst. Solids 258, 161–179 (1999).
[CrossRef]

B. Michel, Th. Henning, C. Jäger, U. Kreibig, “Optical extinction by spherical carbonaceous particles,” Carbon 37, 391–400 (1999).
[CrossRef]

C. Jäger, H. Mutschke, Th. Henning, “Optical properties of carbonaceous dust analogues,” Astron. Astrophys. 332, 291–299 (1998).

Johnson, P. E.

P. E. Johnson, “Grain alignment in the galactic magnetic field,” Nature 295, 371–375 (1982).
[CrossRef]

Kahlau, T.

T. Kahlau, M. Quinten, U. Kreibig, “Extinction and angle-resolved light scattering from aggregated metal clusters,” Appl. Phys. A 62, 19–27 (1996).
[CrossRef]

Kattawar, G. W.

Keller, H. U.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Kempf, S.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Kiesow, A.

M. Quinten, A. Heilmann, A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B 68, 707–712 (1999).
[CrossRef]

Klahr, H.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Kochan, H.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Kozasa, T.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Kreibig, U.

B. Michel, Th. Henning, C. Jäger, U. Kreibig, “Optical extinction by spherical carbonaceous particles,” Carbon 37, 391–400 (1999).
[CrossRef]

T. Kahlau, M. Quinten, U. Kreibig, “Extinction and angle-resolved light scattering from aggregated metal clusters,” Appl. Phys. A 62, 19–27 (1996).
[CrossRef]

M. Quinten, U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt. 32, 6173–6182 (1993).
[CrossRef] [PubMed]

M. Quinten, D. Schönauer, U. Kreibig, “Electronic excitations in many-particle systems: a quantitative analysis,” Z. Phys. D 12, 521–525 (1989).
[CrossRef]

M. Quinten, U. Kreibig, “Optical extinction spectra of systems of small metal particles with aggregates,” in Optical Particle Sizing, G. Gouesbet, G. Grehan, eds. (Plenum, New York, 1988), pp. 247–258.

Krivova, N. A.

Th. Henning, V. B. Il’in, N. A. Krivova, B. Michel, N. V. Voshchinnikov, “WWW—database of optical constants for astronomy,” Astron. Astrophys. Suppl. Ser. 136, 405–406 (1999), available at www.astro.uni-jena.de .
[CrossRef]

Ku, J. C.

J. C. Ku, K. H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Lebedev, A. N.

A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999).
[CrossRef]

Lee, H. M.

B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984).
[CrossRef]

Li, E. H.

A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999).
[CrossRef]

Liang, C.

C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).

Lo, Y. T.

C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).

Lou, W.

W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1994).
[CrossRef]

Mackowski, D. W.

Malhotra, S.

B. T. Draine, S. Malhotra, “On graphite and the 2175 A extinction profile,” Astrophys. J. 414, 632–645 (1993).
[CrossRef]

Mann, I.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Markel, V. A.

V. A. Markel, V. M. Shalaev, T. F. George, “Some theoretical and numerical approaches to the optics of fractal smoke,” in Optics of Nanostructured Materials, V. A. Markel, T. F. George, eds. (Wiley, New York, 2001), pp. 355–411.

Markiewicz, W. J.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Massa, D.

E. L. Fitzpatrick, D. Massa, “An analysis of the shapes of ultraviolet extinction curves. I. The 2175 Å bump,” Astrophys. J. 307, 286–294 (1986).
[CrossRef]

Mennella, V.

V. G. Zubko, V. Mennella, L. Colangeli, E. Bussoletti, “Optical constants of cosmic carbon analogue grains. I. Simulation of clustering by a modified continuous distribution of ellipsoids,” Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996).
[CrossRef]

Metzler, K.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Michel, B.

N. V. Voshchinnikov, V. B. Il’in, Th. Henning, B. Michel, V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877–893 (2000).
[CrossRef]

Th. Henning, V. B. Il’in, N. A. Krivova, B. Michel, N. V. Voshchinnikov, “WWW—database of optical constants for astronomy,” Astron. Astrophys. Suppl. Ser. 136, 405–406 (1999), available at www.astro.uni-jena.de .
[CrossRef]

B. Michel, Th. Henning, C. Jäger, U. Kreibig, “Optical extinction by spherical carbonaceous particles,” Carbon 37, 391–400 (1999).
[CrossRef]

B. Michel, Th. Henning, R. Stognienko, F. Rouleau, “Extinction properties of dust grains: a new computational technique,” Astrophys. J. 468, 834–841 (1996).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).

Mishchenko, M. I.

Morfill, G.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Mozer, J. B.

Mutschke, H.

M. Schnaiter, H. Mutschke, J. Dorschner, Th. Henning, F. Salama, “Matrix-isolated nanosized carbon grains as an analog for the 2175 nm feature carrier,” Astrophys. J. 498, 486–496 (1998).
[CrossRef]

C. Jäger, H. Mutschke, Th. Henning, “Optical properties of carbonaceous dust analogues,” Astron. Astrophys. 332, 291–299 (1998).

Neuhaus, D.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Ossenkopf, V.

R. Stognienko, Th. Henning, V. Ossenkopf, “Optical properties of coagulated particles,” Astron. Astrophys. 296, 797–809 (1995).

Philipp, H. R.

H. R. Philipp, “Infrared optical properties of graphite,” Phys. Rev. B 16, 2896–2900 (1977).
[CrossRef]

E. A. Taft, H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138, A197–A202 (1965).
[CrossRef]

Poppe, T.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Quinten, M.

A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999).
[CrossRef]

M. Quinten, A. Heilmann, A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B 68, 707–712 (1999).
[CrossRef]

M. Quinten, “Optical response of aggregates of clusters with different dielectric functions,” Appl. Phys. B 67, 101–106 (1998).
[CrossRef]

T. Kahlau, M. Quinten, U. Kreibig, “Extinction and angle-resolved light scattering from aggregated metal clusters,” Appl. Phys. A 62, 19–27 (1996).
[CrossRef]

M. Quinten, U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt. 32, 6173–6182 (1993).
[CrossRef] [PubMed]

M. Quinten, D. Schönauer, U. Kreibig, “Electronic excitations in many-particle systems: a quantitative analysis,” Z. Phys. D 12, 521–525 (1989).
[CrossRef]

M. Quinten, U. Kreibig, “Optical extinction spectra of systems of small metal particles with aggregates,” in Optical Particle Sizing, G. Gouesbet, G. Grehan, eds. (Plenum, New York, 1988), pp. 247–258.

Ramaswamy, V.

Ratke, L.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Röder, M.

A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999).
[CrossRef]

Rott, M.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Rouleau, F.

F. Rouleau, Th. Henning, R. Stognienko, “Constraints on the properties of the 2175 Å interstellar feature carrier,” Astron. Astrophys. 322, 633–645 (1997).

B. Michel, Th. Henning, R. Stognienko, F. Rouleau, “Extinction properties of dust grains: a new computational technique,” Astrophys. J. 468, 834–841 (1996).
[CrossRef]

F. Rouleau, “Electromagnetic scattering by compact clusters of spheres,” Astron. Astrophys. 310, 686–698 (1996).

Salama, F.

M. Schnaiter, H. Mutschke, J. Dorschner, Th. Henning, F. Salama, “Matrix-isolated nanosized carbon grains as an analog for the 2175 nm feature carrier,” Astrophys. J. 498, 486–496 (1998).
[CrossRef]

Th. Henning, F. Salama, “Carbon in the universe,” Science 282, 2204–2210 (1998).
[CrossRef] [PubMed]

Schlögl, R.

C. Jäger, Th. Henning, R. Schlögl, O. Spillecke, “Spectral properties of carbon black,” J. Non-Cryst. Solids 258, 161–179 (1999).
[CrossRef]

Schnaiter, M.

M. Schnaiter, H. Mutschke, J. Dorschner, Th. Henning, F. Salama, “Matrix-isolated nanosized carbon grains as an analog for the 2175 nm feature carrier,” Astrophys. J. 498, 486–496 (1998).
[CrossRef]

Schönauer, D.

M. Quinten, D. Schönauer, U. Kreibig, “Electronic excitations in many-particle systems: a quantitative analysis,” Z. Phys. D 12, 521–525 (1989).
[CrossRef]

Schräpler, R.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Schreiber, M.

A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999).
[CrossRef]

Schwehm, G.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Shalaev, V. M.

V. A. Markel, V. M. Shalaev, T. F. George, “Some theoretical and numerical approaches to the optics of fractal smoke,” in Optics of Nanostructured Materials, V. A. Markel, T. F. George, eds. (Wiley, New York, 2001), pp. 355–411.

Shim, K. H.

J. C. Ku, K. H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Sindoni, O. I.

Spillecke, O.

C. Jäger, Th. Henning, R. Schlögl, O. Spillecke, “Spectral properties of carbon black,” J. Non-Cryst. Solids 258, 161–179 (1999).
[CrossRef]

Stecher, T. P.

T. P. Stecher, “Interstellar extinction in the ultraviolet,” Astrophys. J. 142, 1683–1684 (1965).
[CrossRef]

Stendal, A.

A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999).
[CrossRef]

Stenzel, O.

A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999).
[CrossRef]

Stognienko, R.

F. Rouleau, Th. Henning, R. Stognienko, “Constraints on the properties of the 2175 Å interstellar feature carrier,” Astron. Astrophys. 322, 633–645 (1997).

B. Michel, Th. Henning, R. Stognienko, F. Rouleau, “Extinction properties of dust grains: a new computational technique,” Astrophys. J. 468, 834–841 (1996).
[CrossRef]

R. Stognienko, Th. Henning, V. Ossenkopf, “Optical properties of coagulated particles,” Astron. Astrophys. 296, 797–809 (1995).

Stromberg, T. F.

Taft, E. A.

E. A. Taft, H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138, A197–A202 (1965).
[CrossRef]

Tien, C. L.

B. L. Drolen, C. L. Tien, “Absorption and scattering of agglomerated soot particulates,” J. Quant. Spectrosc. Radiat. Transfer 37, 433–448 (1987).
[CrossRef]

Toscano, G.

Trinks, W.

W. Trinks, “Zur Vielfachstreuung an kleinen Kugeln,” Ann. Phys. (Leipzig) 22, 561–590 (1935).

Voshchinnikov, N. V.

N. V. Voshchinnikov, V. B. Il’in, Th. Henning, B. Michel, V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877–893 (2000).
[CrossRef]

Th. Henning, V. B. Il’in, N. A. Krivova, B. Michel, N. V. Voshchinnikov, “WWW—database of optical constants for astronomy,” Astron. Astrophys. Suppl. Ser. 136, 405–406 (1999), available at www.astro.uni-jena.de .
[CrossRef]

Weidenschilling, S. J.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Whittet, D. C.

D. C. Whittet, Dust in the Galactic Environment (Institute of Physics, Bristol, UK, 1992).

Wiscombe, W. J.

W. J. Wiscombe, “Mie scattering calculations: advances in techniques and fast vector-speed computer codes,” internal report (National Center for Atmospheric Research, Boulder, Colo., 1979).

Wurm, G.

J. Blum, G. Wurm, “Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates,” Icarus 143, 138–146 (2000).
[CrossRef]

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Xu, Y.

Zahn, D. R. T.

A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999).
[CrossRef]

Zubko, V. G.

V. G. Zubko, V. Mennella, L. Colangeli, E. Bussoletti, “Optical constants of cosmic carbon analogue grains. I. Simulation of clustering by a modified continuous distribution of ellipsoids,” Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996).
[CrossRef]

Ann. Phys. (Leipzig) (3)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).

W. Trinks, “Zur Vielfachstreuung an kleinen Kugeln,” Ann. Phys. (Leipzig) 22, 561–590 (1935).

R. Gans, “Über die Form ultramikroskopischer Teilchen,” Ann. Phys. (Leipzig) 37, 881–900 (1912).

Appl. Opt. (5)

Appl. Phys. A (1)

T. Kahlau, M. Quinten, U. Kreibig, “Extinction and angle-resolved light scattering from aggregated metal clusters,” Appl. Phys. A 62, 19–27 (1996).
[CrossRef]

Appl. Phys. B (2)

M. Quinten, A. Heilmann, A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B 68, 707–712 (1999).
[CrossRef]

M. Quinten, “Optical response of aggregates of clusters with different dielectric functions,” Appl. Phys. B 67, 101–106 (1998).
[CrossRef]

Astron. Astrophys. (4)

F. Rouleau, “Electromagnetic scattering by compact clusters of spheres,” Astron. Astrophys. 310, 686–698 (1996).

R. Stognienko, Th. Henning, V. Ossenkopf, “Optical properties of coagulated particles,” Astron. Astrophys. 296, 797–809 (1995).

C. Jäger, H. Mutschke, Th. Henning, “Optical properties of carbonaceous dust analogues,” Astron. Astrophys. 332, 291–299 (1998).

F. Rouleau, Th. Henning, R. Stognienko, “Constraints on the properties of the 2175 Å interstellar feature carrier,” Astron. Astrophys. 322, 633–645 (1997).

Astron. Astrophys. Suppl. Ser. (1)

Th. Henning, V. B. Il’in, N. A. Krivova, B. Michel, N. V. Voshchinnikov, “WWW—database of optical constants for astronomy,” Astron. Astrophys. Suppl. Ser. 136, 405–406 (1999), available at www.astro.uni-jena.de .
[CrossRef]

Astrophys. J. (6)

B. Michel, Th. Henning, R. Stognienko, F. Rouleau, “Extinction properties of dust grains: a new computational technique,” Astrophys. J. 468, 834–841 (1996).
[CrossRef]

M. Schnaiter, H. Mutschke, J. Dorschner, Th. Henning, F. Salama, “Matrix-isolated nanosized carbon grains as an analog for the 2175 nm feature carrier,” Astrophys. J. 498, 486–496 (1998).
[CrossRef]

B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89–108 (1984).
[CrossRef]

T. P. Stecher, “Interstellar extinction in the ultraviolet,” Astrophys. J. 142, 1683–1684 (1965).
[CrossRef]

E. L. Fitzpatrick, D. Massa, “An analysis of the shapes of ultraviolet extinction curves. I. The 2175 Å bump,” Astrophys. J. 307, 286–294 (1986).
[CrossRef]

B. T. Draine, S. Malhotra, “On graphite and the 2175 A extinction profile,” Astrophys. J. 414, 632–645 (1993).
[CrossRef]

Astrophys. J. Suppl. Ser. (1)

B. T. Draine, “Tabulated optical properties of graphite and silicate grains,” Astrophys. J. Suppl. Ser. 57, 587–594 (1985).
[CrossRef]

Can. J. Phys. (2)

A.-K. Hamid, I. R. Ciric, M. Hamid, “Multiple scattering by a linear array of conducting spheres,” Can. J. Phys. 68, 1157–1165 (1990).
[CrossRef]

A.-K. Hamid, I. R. Ciric, M. Hamid, “Electromagnetic scattering by an arbitrary configuration of dielectric spheres,” Can. J. Phys. 68, 1419–1428 (1990).
[CrossRef]

Carbon (1)

B. Michel, Th. Henning, C. Jäger, U. Kreibig, “Optical extinction by spherical carbonaceous particles,” Carbon 37, 391–400 (1999).
[CrossRef]

Icarus (1)

J. Blum, G. Wurm, “Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates,” Icarus 143, 138–146 (2000).
[CrossRef]

J. Appl. Phys. (1)

A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85, 7404–7410 (1999).
[CrossRef]

J. Non-Cryst. Solids (1)

C. Jäger, Th. Henning, R. Schlögl, O. Spillecke, “Spectral properties of carbon black,” J. Non-Cryst. Solids 258, 161–179 (1999).
[CrossRef]

J. Opt. A (1)

A. N. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A 1, 573–580 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. D (1)

W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

N. V. Voshchinnikov, V. B. Il’in, Th. Henning, B. Michel, V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877–893 (2000).
[CrossRef]

B. L. Drolen, C. L. Tien, “Absorption and scattering of agglomerated soot particulates,” J. Quant. Spectrosc. Radiat. Transfer 37, 433–448 (1987).
[CrossRef]

J. C. Ku, K. H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

V. G. Zubko, V. Mennella, L. Colangeli, E. Bussoletti, “Optical constants of cosmic carbon analogue grains. I. Simulation of clustering by a modified continuous distribution of ellipsoids,” Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996).
[CrossRef]

Nature (1)

P. E. Johnson, “Grain alignment in the galactic magnetic field,” Nature 295, 371–375 (1982).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

E. A. Taft, H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138, A197–A202 (1965).
[CrossRef]

Phys. Rev. B (3)

H. R. Philipp, “Infrared optical properties of graphite,” Phys. Rev. B 16, 2896–2900 (1977).
[CrossRef]

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long-wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
[CrossRef]

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, Th. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett. 85, 2426–2429 (2000).
[CrossRef] [PubMed]

Radio Sci. (1)

C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).

Rev. Mod. Astron. (1)

O. Fischer, “Polarization by interstellar dust—modelling and interpretation of polarization maps,” Rev. Mod. Astron. 8, 103–124 (1995).

Science (1)

Th. Henning, F. Salama, “Carbon in the universe,” Science 282, 2204–2210 (1998).
[CrossRef] [PubMed]

Z. Phys. D (1)

M. Quinten, D. Schönauer, U. Kreibig, “Electronic excitations in many-particle systems: a quantitative analysis,” Z. Phys. D 12, 521–525 (1989).
[CrossRef]

Other (6)

D. C. Whittet, Dust in the Galactic Environment (Institute of Physics, Bristol, UK, 1992).

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, San Diego, Calif., 2000).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

M. Quinten, U. Kreibig, “Optical extinction spectra of systems of small metal particles with aggregates,” in Optical Particle Sizing, G. Gouesbet, G. Grehan, eds. (Plenum, New York, 1988), pp. 247–258.

W. J. Wiscombe, “Mie scattering calculations: advances in techniques and fast vector-speed computer codes,” internal report (National Center for Atmospheric Research, Boulder, Colo., 1979).

V. A. Markel, V. M. Shalaev, T. F. George, “Some theoretical and numerical approaches to the optics of fractal smoke,” in Optics of Nanostructured Materials, V. A. Markel, T. F. George, eds. (Wiley, New York, 2001), pp. 355–411.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of compact aggregates with N = 16, 93, 256 primary particles.

Fig. 2
Fig. 2

Optical extinction spectra of a compact aggregate and a linear chain with N = 16 primary spheres with sizes 2a = 20 nm, a volume-equivalent sphere, and a volume-equivalent prolate spheroid in the wavelength range 0.2–0.8 µm. a–d, Different sets of optical constants: a, graphite; b, H50; c, CEL400; and d, CEL1000. For references see text.

Fig. 3
Fig. 3

Optical extinction spectra of a compact aggregate and a linear chain with N = 16 primary spheres with sizes 2a = 20 nm, a volume-equivalent sphere, and a volume-equivalent prolate spheroid in the wavelength range 0.2–1000 µm. Extinction cross sections per unit volume calculated from the optical constants a, CEL400 and b, CEL1000 taken from Ref. 8 are shown. For comparison, measured extinction values of diesel soot aerosol are given (filled triangles). c, d, Ratios of the aggregate spectra to the extinction cross sections of the volume-equivalent sphere (ENH1) and of 16 single spheres (ENH2).

Fig. 4
Fig. 4

Decomposition of the optical extinction spectra of a linear chain N = 16 and of prolate spheroid half axes A = 160 nm and B = 10 nm into the contributions of the two principal excitation modes (optical constants a, c, CEL1000 and b, d, CEL400).

Fig. 5
Fig. 5

Optical extinction spectra of compact and chainlike aggregates with the number of primary spheres N varying in the range N = 16–256, spectra of corresponding volume-equivalent spheres with diameters 2R = 504–906 nm, and spectra of volume-equivalent prolate spheroids with values of long major axis A given by A = 160–930 nm. For the calculations, the optical constants a, c, H50 and b, d, CEL1000 were used.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σext=2πk2n=12n+1Rean+bn,
σextN=2πk2i=1Nn=1m=-nnReαnmi+βnmi.
L=integerx+4x1/3+1, x8=integerx+4.05x1/3+2, 8<x<4200=integerx+4x1/3+2, 4200x20000,
σext=2π3λImα+2α+8π39λ4α|2+2|α|2,
α=43 πAB2ε-11+LAε-1,α=43 πAB2ε-11+LBε-1.
σext=8π2εM3λ AB2ε2εM+LAε1-εM2+LA2ε22+2ε2εM+LBε1-εM2+LB2ε22.
εω=1+χ-ωp2ω2+γ2+i γωωp2ω2+γ2,
σext=σ+σ8π2εM3λ AB2ε2ε12+ε221LA2+2LB2.
σext  λ2A-Bλ2+Cλ4+Dλ6,

Metrics