Abstract

An analytical approach for a calculation of the parameters of autodyne lidar is presented. Approximate expressions connecting the absorption coefficient and the distance to the remote target with both the lidar parameters and the measured quantities are obtained. These expressions allow one to retrieve easily the information about the atmosphere from the experimental data.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. R. King, G. J. Steward, “Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length,” New Sci. 17, 180–185 (1963).
  2. M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
    [CrossRef] [PubMed]
  3. A. P. Godlevsky, E. P. Gordov, Ya. Ya. Ponurovskii, A. Z. Fazliev, “Parametric laser-reception lidar,” Appl. Opt. 26, 1607–1611 (1987).
    [CrossRef] [PubMed]
  4. J. H. Churnside, “Signal-to-noise in a backscatter-modulated Doppler velocimeter,” Appl. Opt. 23, 2097–2106 (1984).
    [CrossRef] [PubMed]
  5. J. H. Churnside, “Laser Doppler velocimetry by modulating a CO2 laser with backscattered light,” Appl. Opt. 23, 61–66 (1984).
    [CrossRef]
  6. E. P. Gordov, “Autodyne lidars of the second generation,” Atmos. Oceanic Opt. 8, 137–144 (1995).
  7. E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in The 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).
  8. E. P. Gordov, M. M. Makogon, G. A. Koganov, “Potential of the cw parametric CO2 autodyne lidar for hydrocarbon sources assessment,” in Proceedings of the International Conference ENVIROMIS’2000 (Atmospheric Optics Institute, Tomsk, Russia, 2001), pp. 21–26.
  9. E. P. Gordov, G. S. Khmel’nitskii, “On polarization characteristics of an LD-lidar,” Atmos. Oceanic Opt. 7, 63–64 (1994).
  10. E. P. Gordov, G. S. Khmelnitskii, “Multi-purpose CW CO2 autodyne lidar,” in Novel Applications of Lasers and Pulsed Power, R. D. Curry, ed., Proc. SPIE2374, 275–281 (1995).
  11. E. P. Gordov, G. S. Khmelnitskii, A. Z. Fazliev, “Multi-purpose CW CO2 autodyne lidar,” in Laser Optics ’95: Gas Lasers, I. M. Belousova, ed., Proc. SPIE2773, 160–163 (1996).
  12. A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).
  13. Yu. S. Balin, Atmospheric Optics Institute, Tomsk, Russia (personal communication, 2002).
  14. Yu. S. Balin, S. V. Samoilova, M. M. Krekova, D. M. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6365–6373 (1999).
    [CrossRef]
  15. G. Larcheveque, I. Balin, R. Nessler, P. Quaglia, V. Simeonov, H. van den Bergh, B. Calpini, “Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland,” Appl. Opt. 41, 2741–2790 (2002).
    [CrossRef]

2002 (1)

G. Larcheveque, I. Balin, R. Nessler, P. Quaglia, V. Simeonov, H. van den Bergh, B. Calpini, “Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland,” Appl. Opt. 41, 2741–2790 (2002).
[CrossRef]

1999 (1)

1995 (1)

E. P. Gordov, “Autodyne lidars of the second generation,” Atmos. Oceanic Opt. 8, 137–144 (1995).

1994 (1)

E. P. Gordov, G. S. Khmel’nitskii, “On polarization characteristics of an LD-lidar,” Atmos. Oceanic Opt. 7, 63–64 (1994).

1991 (1)

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

1989 (1)

A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).

1987 (1)

1984 (2)

1963 (1)

P. G. R. King, G. J. Steward, “Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length,” New Sci. 17, 180–185 (1963).

Balin, I.

G. Larcheveque, I. Balin, R. Nessler, P. Quaglia, V. Simeonov, H. van den Bergh, B. Calpini, “Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland,” Appl. Opt. 41, 2741–2790 (2002).
[CrossRef]

Balin, Yu. S.

Calpini, B.

G. Larcheveque, I. Balin, R. Nessler, P. Quaglia, V. Simeonov, H. van den Bergh, B. Calpini, “Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland,” Appl. Opt. 41, 2741–2790 (2002).
[CrossRef]

Churnside, J. H.

Fazliev, A. Z.

A. P. Godlevsky, E. P. Gordov, Ya. Ya. Ponurovskii, A. Z. Fazliev, “Parametric laser-reception lidar,” Appl. Opt. 26, 1607–1611 (1987).
[CrossRef] [PubMed]

E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in The 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).

E. P. Gordov, G. S. Khmelnitskii, A. Z. Fazliev, “Multi-purpose CW CO2 autodyne lidar,” in Laser Optics ’95: Gas Lasers, I. M. Belousova, ed., Proc. SPIE2773, 160–163 (1996).

Godlevsky, A. P.

Gordov, E. P.

E. P. Gordov, “Autodyne lidars of the second generation,” Atmos. Oceanic Opt. 8, 137–144 (1995).

E. P. Gordov, G. S. Khmel’nitskii, “On polarization characteristics of an LD-lidar,” Atmos. Oceanic Opt. 7, 63–64 (1994).

A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).

A. P. Godlevsky, E. P. Gordov, Ya. Ya. Ponurovskii, A. Z. Fazliev, “Parametric laser-reception lidar,” Appl. Opt. 26, 1607–1611 (1987).
[CrossRef] [PubMed]

E. P. Gordov, G. S. Khmelnitskii, “Multi-purpose CW CO2 autodyne lidar,” in Novel Applications of Lasers and Pulsed Power, R. D. Curry, ed., Proc. SPIE2374, 275–281 (1995).

E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in The 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).

E. P. Gordov, M. M. Makogon, G. A. Koganov, “Potential of the cw parametric CO2 autodyne lidar for hydrocarbon sources assessment,” in Proceedings of the International Conference ENVIROMIS’2000 (Atmospheric Optics Institute, Tomsk, Russia, 2001), pp. 21–26.

E. P. Gordov, G. S. Khmelnitskii, A. Z. Fazliev, “Multi-purpose CW CO2 autodyne lidar,” in Laser Optics ’95: Gas Lasers, I. M. Belousova, ed., Proc. SPIE2773, 160–163 (1996).

Harris, M.

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

Khazanov, A. M.

A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).

Khmel’nitskii, G. S.

E. P. Gordov, G. S. Khmel’nitskii, “On polarization characteristics of an LD-lidar,” Atmos. Oceanic Opt. 7, 63–64 (1994).

Khmelnitskii, G. S.

E. P. Gordov, G. S. Khmelnitskii, A. Z. Fazliev, “Multi-purpose CW CO2 autodyne lidar,” in Laser Optics ’95: Gas Lasers, I. M. Belousova, ed., Proc. SPIE2773, 160–163 (1996).

E. P. Gordov, G. S. Khmelnitskii, “Multi-purpose CW CO2 autodyne lidar,” in Novel Applications of Lasers and Pulsed Power, R. D. Curry, ed., Proc. SPIE2374, 275–281 (1995).

King, P. G. R.

P. G. R. King, G. J. Steward, “Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length,” New Sci. 17, 180–185 (1963).

Koganov, G. A.

A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).

E. P. Gordov, M. M. Makogon, G. A. Koganov, “Potential of the cw parametric CO2 autodyne lidar for hydrocarbon sources assessment,” in Proceedings of the International Conference ENVIROMIS’2000 (Atmospheric Optics Institute, Tomsk, Russia, 2001), pp. 21–26.

Krekova, M. M.

Larcheveque, G.

G. Larcheveque, I. Balin, R. Nessler, P. Quaglia, V. Simeonov, H. van den Bergh, B. Calpini, “Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland,” Appl. Opt. 41, 2741–2790 (2002).
[CrossRef]

Loudon, R.

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

Makogon, M. M.

E. P. Gordov, M. M. Makogon, G. A. Koganov, “Potential of the cw parametric CO2 autodyne lidar for hydrocarbon sources assessment,” in Proceedings of the International Conference ENVIROMIS’2000 (Atmospheric Optics Institute, Tomsk, Russia, 2001), pp. 21–26.

E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in The 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).

Mander, G. L.

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

Nessler, R.

G. Larcheveque, I. Balin, R. Nessler, P. Quaglia, V. Simeonov, H. van den Bergh, B. Calpini, “Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland,” Appl. Opt. 41, 2741–2790 (2002).
[CrossRef]

Orlovskii, V. M.

E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in The 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).

Ponurovskii, Ya. Ya.

Quaglia, P.

G. Larcheveque, I. Balin, R. Nessler, P. Quaglia, V. Simeonov, H. van den Bergh, B. Calpini, “Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland,” Appl. Opt. 41, 2741–2790 (2002).
[CrossRef]

Samoilova, S. V.

Simeonov, V.

G. Larcheveque, I. Balin, R. Nessler, P. Quaglia, V. Simeonov, H. van den Bergh, B. Calpini, “Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland,” Appl. Opt. 41, 2741–2790 (2002).
[CrossRef]

Steward, G. J.

P. G. R. King, G. J. Steward, “Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length,” New Sci. 17, 180–185 (1963).

van den Bergh, H.

G. Larcheveque, I. Balin, R. Nessler, P. Quaglia, V. Simeonov, H. van den Bergh, B. Calpini, “Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland,” Appl. Opt. 41, 2741–2790 (2002).
[CrossRef]

Vaughan, J. M.

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

Winker, D. M.

Appl. Opt. (5)

Atmos. Oceanic Opt. (2)

E. P. Gordov, “Autodyne lidars of the second generation,” Atmos. Oceanic Opt. 8, 137–144 (1995).

E. P. Gordov, G. S. Khmel’nitskii, “On polarization characteristics of an LD-lidar,” Atmos. Oceanic Opt. 7, 63–64 (1994).

Atmos. Opt. (1)

A. M. Khazanov, G. A. Koganov, E. P. Gordov, “Solution of the sounding problem based on the quantitative description of an LR lidar,” Atmos. Opt. 2, 717–722 (1989).

New Sci. (1)

P. G. R. King, G. J. Steward, “Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length,” New Sci. 17, 180–185 (1963).

Phys. Rev. Lett. (1)

M. Harris, R. Loudon, G. L. Mander, J. M. Vaughan, “Above-threshold laser amplifier,” Phys. Rev. Lett. 67, 1743–1746 (1991).
[CrossRef] [PubMed]

Other (5)

Yu. S. Balin, Atmospheric Optics Institute, Tomsk, Russia (personal communication, 2002).

E. P. Gordov, G. S. Khmelnitskii, “Multi-purpose CW CO2 autodyne lidar,” in Novel Applications of Lasers and Pulsed Power, R. D. Curry, ed., Proc. SPIE2374, 275–281 (1995).

E. P. Gordov, G. S. Khmelnitskii, A. Z. Fazliev, “Multi-purpose CW CO2 autodyne lidar,” in Laser Optics ’95: Gas Lasers, I. M. Belousova, ed., Proc. SPIE2773, 160–163 (1996).

E. P. Gordov, M. M. Makogon, A. Z. Fazliev, V. M. Orlovskii, “Basics and applications of the laser detection of weak light signals,” in The 11th International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed., Proc. SPIE3485, 583–591 (1998).

E. P. Gordov, M. M. Makogon, G. A. Koganov, “Potential of the cw parametric CO2 autodyne lidar for hydrocarbon sources assessment,” in Proceedings of the International Conference ENVIROMIS’2000 (Atmospheric Optics Institute, Tomsk, Russia, 2001), pp. 21–26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Scheme of mirrors of an autodyne lidar.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

2E±t2+ωQE±t  c22E±z2=-102P±t2,
1κ x˙+α+1x-αR1y=ξx1+δ2+x21+γt2,
1κ y˙+α+1y-αγtx=ξy1+δ2+y21+R12,
α=cκl+at, ξ=Ng2Δ0κγ, =4g2γγ, δ=cλγatl, γt=R0+exp-2σL1-R02R2×cosωτl at+φ.
ξ=1+ 2lcPouthν11-R0R12.
xt=x0t+R2x1t, yt=y0t+R2y1t,
x˙1+a11x1+a12y1=b1 exp-2σL×cosωτl at+φ1,
y˙1+a21x1+a22y1=b2 exp-2σL×cosωτl at+φ2.
x˙1+a11x1+a12y1=b1 exp-2σLcos2πνbt,
y˙1+a21x1+a22y1=b2 exp-2σLcos2πνbt,
νb=Ω 4πLla0λ
L=l πνb4Ωλa0.
x1t=X1sinΔωt+ϕx,
y1t=Y1sinΔωt+ϕy,
X1=R22 exp-4σLa222b12-2a12a22b1b2+a122b22+b12Δω2a122a212+2a12a21-a11a22+Δω2+a112+Δω2a222+Δω2,
Y1=R22 exp-4σLa212b12-2a11a21b1b2+b22a112+Δω2a122a212+2a12a21-a11a22+Δω2+a112+Δω2a222+Δω2,
σ=14LlogR22a222b12-2a12a22b1b2+a122b22+b12Δω2X1a122a212+2a12a21-a11a22+Δω2+a112+Δω2a222+Δω2,
σ=14LlogR22a212b12-2a11a21b1b2+b22a112+Δω2Y1a122a212+2a12a21-a11a22+Δω2+a112+Δω2a222+Δω2.
X1Y1=a222b12-2a12a22b1b2+a122b22+b12Δω2a212b12-2a11a21b1b2+b22a112+Δω2.
2π 2Lla0λsinΩt.
νbmax=Ω 2Lla0λ,
L=l2νbmaxΩλa0.
νbmaxνb=π2.
a11=1+α-ξ 1+δ2-1+R02x021+δ2+1+R02x022,
a12=-αR1,
a21=-αR0,
a22=1+α-ξ 1+δ2-1+R12y021+δ2+1+R12y022,
b1=-2ξ 1+R01-R02x031+δ2+1+R02x022,
b2=α1-R02x0.

Metrics