Abstract

This paper briefly discusses the mobile ground-based incoherent Doppler wind lidar system, with iodine filters as receiving frequency discriminators, developed by the Ocean Remote Sensing Laboratory, Ocean University of Qingdao, China. The presented result of wind profiles in October and November 2000, retrieved from the combined Mie and Rayleigh backscattering, is the first report to our knowledge of wind measurements in the troposphere by such a system, where the required independent measurement of aerosol-scattering ratio can also be performed. A second iodine vapor filter was used to lock the laser to absolute frequency reference for both wind and aerosol-scattering ratio measurements. Intercomparison experiments of the lidar wind profile measurements were performed with pilot balloons. Results showed that the standard deviation of wind speed and wind direction, for the 2–4 km altitude range, were 0.985 m/s and 17.9°, respectively.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Chanin, A. Gariner, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophy. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  2. C. L. Korb, B. Gentry, C. Weng, “The edge technique: theory and application to the lidar measurement of atmospheric winds,” Appl. Opt. 31, 4202–4213 (1992).
    [CrossRef] [PubMed]
  3. C. L. Korb, B. Gentry, X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
    [CrossRef] [PubMed]
  4. K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
    [CrossRef]
  5. J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
    [CrossRef]
  6. J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
    [CrossRef]
  7. H. S. Shimizu, A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1391 (1983).
    [CrossRef] [PubMed]
  8. Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).
  9. Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
    [CrossRef]
  10. W. B. Chen, T. L. Zhang, D. Wu, Z. S. Liu, “Atomic filter for laser Doppler velocimetry,” Acta Opt. Sin. 17, 346–350 (1997) (in Chinese).
  11. J. S. Friedman, C. A. Tepley, P. A. Castleberg, H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22, 1648–1650 (1997).
    [CrossRef]
  12. A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
    [CrossRef]
  13. S. H. Bloom, R. Kremer, P. A. Searcy, M. Rivers, J. Menders, E. Korevaar, “Long-range, noncoherent laser Doppler velocimeter,” Opt. Lett. 16, 1794–1796 (1991).
    [CrossRef] [PubMed]
  14. C. L. Korb, B. M. Gentry, S. X. Li, C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt. 37, 3097–3104 (1998).
    [CrossRef]
  15. C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidar,” Appl. Opt. 40, 4875–4884 (2001).
    [CrossRef]
  16. B. M. Gentry, H. Chen, S. X. Li, “Wind measurements with 355-nm molecular Doppler lidar,” Opt. Lett. 25, 1231–1233 (2000).
    [CrossRef]
  17. R. T. Menzies, “Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit,” Appl. Opt. 25, 2546–2553 (1986).
    [CrossRef] [PubMed]
  18. R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, C. Y. She, “High spectral resolution lidar measurement of tropospheric backscatter-ratio using barium atomic blocking filter,” J. Atmos. Oceanic Tech. 7, 876–881 (1991).
    [CrossRef]
  19. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
    [CrossRef] [PubMed]
  20. S. Gerstenkorn, P. Luc, “Atlas du spectre d’absorption de la molecule d’iode,” (Centre National de la Recherché Scientifique, Paris. 1978).
  21. J. W. Hair, L. M. Caldwell, D. A. Krueger, C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
    [CrossRef]

2001 (2)

2000 (1)

1998 (3)

1997 (4)

C. L. Korb, B. Gentry, X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
[CrossRef] [PubMed]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

W. B. Chen, T. L. Zhang, D. Wu, Z. S. Liu, “Atomic filter for laser Doppler velocimetry,” Acta Opt. Sin. 17, 346–350 (1997) (in Chinese).

J. S. Friedman, C. A. Tepley, P. A. Castleberg, H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22, 1648–1650 (1997).
[CrossRef]

1995 (1)

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

1994 (1)

1992 (2)

C. L. Korb, B. Gentry, C. Weng, “The edge technique: theory and application to the lidar measurement of atmospheric winds,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

1991 (2)

S. H. Bloom, R. Kremer, P. A. Searcy, M. Rivers, J. Menders, E. Korevaar, “Long-range, noncoherent laser Doppler velocimeter,” Opt. Lett. 16, 1794–1796 (1991).
[CrossRef] [PubMed]

R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, C. Y. She, “High spectral resolution lidar measurement of tropospheric backscatter-ratio using barium atomic blocking filter,” J. Atmos. Oceanic Tech. 7, 876–881 (1991).
[CrossRef]

1989 (1)

M. L. Chanin, A. Gariner, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophy. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

1986 (1)

1983 (1)

Abreu, V. J.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Alvarez, R. J.

R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, C. Y. She, “High spectral resolution lidar measurement of tropospheric backscatter-ratio using barium atomic blocking filter,” J. Atmos. Oceanic Tech. 7, 876–881 (1991).
[CrossRef]

Barnes, J. E.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Bloom, S. H.

Caldwell, L. M.

J. W. Hair, L. M. Caldwell, D. A. Krueger, C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
[CrossRef]

R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, C. Y. She, “High spectral resolution lidar measurement of tropospheric backscatter-ratio using barium atomic blocking filter,” J. Atmos. Oceanic Tech. 7, 876–881 (1991).
[CrossRef]

Castleberg, P. A.

Chanin, M. L.

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

M. L. Chanin, A. Gariner, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophy. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Chen, H.

Chen, W. B.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

W. B. Chen, T. L. Zhang, D. Wu, Z. S. Liu, “Atomic filter for laser Doppler velocimetry,” Acta Opt. Sin. 17, 346–350 (1997) (in Chinese).

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).

Eloranta, E. W.

Fischer, K. F.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Flesia, C.

Friedman, J. S.

Gariner, A.

M. L. Chanin, A. Gariner, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophy. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Garnier, A.

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

Gentry, B.

Gentry, B. M.

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, “Atlas du spectre d’absorption de la molecule d’iode,” (Centre National de la Recherché Scientifique, Paris. 1978).

Hair, J. W.

J. W. Hair, L. M. Caldwell, D. A. Krueger, C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
[CrossRef]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).

Hauchecorne, A.

M. L. Chanin, A. Gariner, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophy. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Irgang, T. D.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Korb, C. L.

Korevaar, E.

Kremer, R.

Krueger, D. A.

J. W. Hair, L. M. Caldwell, D. A. Krueger, C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
[CrossRef]

R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, C. Y. She, “High spectral resolution lidar measurement of tropospheric backscatter-ratio using barium atomic blocking filter,” J. Atmos. Oceanic Tech. 7, 876–881 (1991).
[CrossRef]

Lee, A.

Li, S. X.

Li, X.

Li, Y. H.

R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, C. Y. She, “High spectral resolution lidar measurement of tropospheric backscatter-ratio using barium atomic blocking filter,” J. Atmos. Oceanic Tech. 7, 876–881 (1991).
[CrossRef]

Liu, Z. S.

W. B. Chen, T. L. Zhang, D. Wu, Z. S. Liu, “Atomic filter for laser Doppler velocimetry,” Acta Opt. Sin. 17, 346–350 (1997) (in Chinese).

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).

Luc, P.

S. Gerstenkorn, P. Luc, “Atlas du spectre d’absorption de la molecule d’iode,” (Centre National de la Recherché Scientifique, Paris. 1978).

McGill, M. J.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

McKay, J. A.

Menders, J.

Menzies, R. T.

Piironen, P.

Porteneuve, J.

M. L. Chanin, A. Gariner, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophy. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Rivers, M.

Roe, H.

Searcy, P. A.

She, C. Y.

J. W. Hair, L. M. Caldwell, D. A. Krueger, C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
[CrossRef]

C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidar,” Appl. Opt. 40, 4875–4884 (2001).
[CrossRef]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, C. Y. She, “High spectral resolution lidar measurement of tropospheric backscatter-ratio using barium atomic blocking filter,” J. Atmos. Oceanic Tech. 7, 876–881 (1991).
[CrossRef]

H. S. Shimizu, A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1391 (1983).
[CrossRef] [PubMed]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).

Shimizu, H. S.

Skinner, W. R.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Tepley, C. A.

Weng, C.

Wu, D.

W. B. Chen, T. L. Zhang, D. Wu, Z. S. Liu, “Atomic filter for laser Doppler velocimetry,” Acta Opt. Sin. 17, 346–350 (1997) (in Chinese).

Zhang, T. L.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

W. B. Chen, T. L. Zhang, D. Wu, Z. S. Liu, “Atomic filter for laser Doppler velocimetry,” Acta Opt. Sin. 17, 346–350 (1997) (in Chinese).

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).

Acta Opt. Sin. (1)

W. B. Chen, T. L. Zhang, D. Wu, Z. S. Liu, “Atomic filter for laser Doppler velocimetry,” Acta Opt. Sin. 17, 346–350 (1997) (in Chinese).

Appl. Opt. (9)

R. T. Menzies, “Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit,” Appl. Opt. 25, 2546–2553 (1986).
[CrossRef] [PubMed]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
[CrossRef]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
[CrossRef]

H. S. Shimizu, A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1391 (1983).
[CrossRef] [PubMed]

C. L. Korb, B. Gentry, C. Weng, “The edge technique: theory and application to the lidar measurement of atmospheric winds,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

C. L. Korb, B. Gentry, X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, S. X. Li, C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt. 37, 3097–3104 (1998).
[CrossRef]

C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidar,” Appl. Opt. 40, 4875–4884 (2001).
[CrossRef]

J. W. Hair, L. M. Caldwell, D. A. Krueger, C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
[CrossRef]

Appl. Phys. B (2)

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “An incoherent Doppler lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64, 561–566 (1997).
[CrossRef]

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

Geophy. Res. Lett. (1)

M. L. Chanin, A. Gariner, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophy. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

J. Atmos. Oceanic Tech. (1)

R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, C. Y. She, “High spectral resolution lidar measurement of tropospheric backscatter-ratio using barium atomic blocking filter,” J. Atmos. Oceanic Tech. 7, 876–881 (1991).
[CrossRef]

Opt. Eng. (1)

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Opt. Lett. (4)

Other (2)

S. Gerstenkorn, P. Luc, “Atlas du spectre d’absorption de la molecule d’iode,” (Centre National de la Recherché Scientifique, Paris. 1978).

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram for injection-seeded Q-switched pulsed Nd:YAG laser transmitter on the left panels. The lidar receiver is shown on the right, where the iodine cell 2 is the frequency discriminator.

Fig. 2
Fig. 2

Normalized transmission for absorption line 1109 of the iodine filter near 532 nm. The temperature of cell finger and cell body are 65.02 °C and 69.8 °C, respectively. The wave numbers at reference point A and locking point E are 18787.796 and 18787.830 cm-1 (1.02 GHz apart), respectively.

Fig. 3
Fig. 3

NWR as a function of line-of-sight wind velocity with different aerosol scattering ratio, R b . The aerosol scattering ratio for pure Rayleigh case is R b = 0. (a), atmosphere temperature of 255.7 °K (altitude ∼5 km), (b) atmosphere temperature of 238.2 °K (altitude ∼7 km).

Fig. 4
Fig. 4

Example of backscatter ratio, (β a + β m )/β m = R b + 1, measured on 30 October 2000 in Qingdao, China.

Fig. 5
Fig. 5

Measurements of wind speed and direction by rawinsonde balloon of Qingdao Meteorological Station (QMS) and ORSL lidar from 8:00 PM to 9:00 PM on 30 October 2000. Filled circle, lidar data; filled diamond, collocated rawinsonde data. The angle indicating wind direction is zero for south-pointing wind and increases as it rotates toward the west.

Fig. 6
Fig. 6

Wind and direction profiles measured by QMS rawinsonde balloon and ORSL lidar from 8:00 PM to 9:00 PM on 1 November 2000. Filled circle, lidar measurement data; filled diamond, collocated rawinsonde data. Wind direction convention is the same as in Fig. 5.

Fig. 7
Fig. 7

Comparison between lidar wind and balloon wind between 2 and 4 km for all seven experiments. The standard deviations of wind speed and direction are 0.985 m/s and 17.9°, yielding correlation coefficients 0.96 and 0.95, respectively.

Tables (1)

Tables Icon

Table 1 Property and Parameters of MIDWiL

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

NR=kRΔrr2βa+βmexp-2  drαar+αmr,
NM=kMΔrr2faβa+fmβmexp-2  drαar+αmr.
faν=Fν,
fmT, P, ν= ν-ν, T, PFνdν,
 ν-ν, T, Pdν=1,
RWν=NMνNRν=kMkRfaνβa/βm+fmνβa/βm+1,
RWν0=NMν0NRν0=kMkRfaν0βa/βm+fmν0βa/βm+1,
NWR=RWν2RWν0=0.5faνβa/βm+fmνfaν0βa/βm+fmν0.
Rbr=βar+βmrβmr-1=kMfmNRrkRNMr-1.
ν+=νh sin θ+νν cos θ, ν-=-νh sin θ+νν cos θ,
νh=ν+-ν-2 sin θ.

Metrics